Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | da.ps0 | |- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
					|
| Assertion | dalemddea | |- ( ps -> d e. A )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | da.ps0 | |- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						|
| 2 | simp1r | |- ( ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) -> d e. A )  | 
						|
| 3 | 1 2 | sylbi | |- ( ps -> d e. A )  |