Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalemdea.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalemdea.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalemdea.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalemdea.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalemdea.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
10 |
1 2 3 4 6 7
|
dalem2 |
|- ( ph -> ( ( P .\/ Q ) .\/ ( S .\/ T ) ) e. O ) |
11 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
12 |
1
|
dalempea |
|- ( ph -> P e. A ) |
13 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
14 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
15 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
16 |
3 4 6 7
|
lplnri1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ Y e. O ) -> P =/= Q ) |
17 |
11 12 13 14 15 16
|
syl131anc |
|- ( ph -> P =/= Q ) |
18 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
19 |
3 4 18
|
llni2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
20 |
11 12 13 17 19
|
syl31anc |
|- ( ph -> ( P .\/ Q ) e. ( LLines ` K ) ) |
21 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
22 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
23 |
1
|
dalemuea |
|- ( ph -> U e. A ) |
24 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
25 |
3 4 6 8
|
lplnri1 |
|- ( ( K e. HL /\ ( S e. A /\ T e. A /\ U e. A ) /\ Z e. O ) -> S =/= T ) |
26 |
11 21 22 23 24 25
|
syl131anc |
|- ( ph -> S =/= T ) |
27 |
3 4 18
|
llni2 |
|- ( ( ( K e. HL /\ S e. A /\ T e. A ) /\ S =/= T ) -> ( S .\/ T ) e. ( LLines ` K ) ) |
28 |
11 21 22 26 27
|
syl31anc |
|- ( ph -> ( S .\/ T ) e. ( LLines ` K ) ) |
29 |
3 5 4 18 6
|
2llnmj |
|- ( ( K e. HL /\ ( P .\/ Q ) e. ( LLines ` K ) /\ ( S .\/ T ) e. ( LLines ` K ) ) -> ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. A <-> ( ( P .\/ Q ) .\/ ( S .\/ T ) ) e. O ) ) |
30 |
11 20 28 29
|
syl3anc |
|- ( ph -> ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. A <-> ( ( P .\/ Q ) .\/ ( S .\/ T ) ) e. O ) ) |
31 |
10 30
|
mpbird |
|- ( ph -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. A ) |
32 |
9 31
|
eqeltrid |
|- ( ph -> D e. A ) |