| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem3.m |
|- ./\ = ( meet ` K ) |
| 6 |
|
dalem3.o |
|- O = ( LPlanes ` K ) |
| 7 |
|
dalem3.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 8 |
|
dalem3.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 9 |
|
dalem3.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
| 10 |
|
dalem3.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ D = Q ) -> D = Q ) |
| 12 |
1 2 3 4 6 7
|
dalemqnet |
|- ( ph -> Q =/= T ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ D = Q ) -> Q =/= T ) |
| 14 |
11 13
|
eqnetrd |
|- ( ( ph /\ D = Q ) -> D =/= T ) |
| 15 |
1 2 3 4 5 6 7 8 9 10
|
dalem4 |
|- ( ( ph /\ D =/= T ) -> D =/= E ) |
| 16 |
14 15
|
syldan |
|- ( ( ph /\ D = Q ) -> D =/= E ) |
| 17 |
1 2 3 4 5 6 7 8 9 10
|
dalem3 |
|- ( ( ph /\ D =/= Q ) -> D =/= E ) |
| 18 |
16 17
|
pm2.61dane |
|- ( ph -> D =/= E ) |