Description: Lemma for dath . Axis of perspectivity points D and E are different. (Contributed by NM, 10-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
|
dalemc.l | |- .<_ = ( le ` K ) |
||
dalemc.j | |- .\/ = ( join ` K ) |
||
dalemc.a | |- A = ( Atoms ` K ) |
||
dalem3.m | |- ./\ = ( meet ` K ) |
||
dalem3.o | |- O = ( LPlanes ` K ) |
||
dalem3.y | |- Y = ( ( P .\/ Q ) .\/ R ) |
||
dalem3.z | |- Z = ( ( S .\/ T ) .\/ U ) |
||
dalem3.d | |- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
||
dalem3.e | |- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
||
Assertion | dalemdnee | |- ( ph -> D =/= E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
|
2 | dalemc.l | |- .<_ = ( le ` K ) |
|
3 | dalemc.j | |- .\/ = ( join ` K ) |
|
4 | dalemc.a | |- A = ( Atoms ` K ) |
|
5 | dalem3.m | |- ./\ = ( meet ` K ) |
|
6 | dalem3.o | |- O = ( LPlanes ` K ) |
|
7 | dalem3.y | |- Y = ( ( P .\/ Q ) .\/ R ) |
|
8 | dalem3.z | |- Z = ( ( S .\/ T ) .\/ U ) |
|
9 | dalem3.d | |- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
|
10 | dalem3.e | |- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
|
11 | simpr | |- ( ( ph /\ D = Q ) -> D = Q ) |
|
12 | 1 2 3 4 6 7 | dalemqnet | |- ( ph -> Q =/= T ) |
13 | 12 | adantr | |- ( ( ph /\ D = Q ) -> Q =/= T ) |
14 | 11 13 | eqnetrd | |- ( ( ph /\ D = Q ) -> D =/= T ) |
15 | 1 2 3 4 5 6 7 8 9 10 | dalem4 | |- ( ( ph /\ D =/= T ) -> D =/= E ) |
16 | 14 15 | syldan | |- ( ( ph /\ D = Q ) -> D =/= E ) |
17 | 1 2 3 4 5 6 7 8 9 10 | dalem3 | |- ( ( ph /\ D =/= Q ) -> D =/= E ) |
18 | 16 17 | pm2.61dane | |- ( ph -> D =/= E ) |