| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalempnes.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							dalempnes.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 7 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 8 | 
							
								1 4
							 | 
							dalempeb | 
							 |-  ( ph -> P e. ( Base ` K ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 10 | 
							
								1
							 | 
							dalemqea | 
							 |-  ( ph -> Q e. A )  | 
						
						
							| 11 | 
							
								1
							 | 
							dalemrea | 
							 |-  ( ph -> R e. A )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 13 | 
							
								12 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								9 10 11 13
							 | 
							syl3anc | 
							 |-  ( ph -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								12 2 3
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) -> P .<_ ( P .\/ ( Q .\/ R ) ) )  | 
						
						
							| 16 | 
							
								7 8 14 15
							 | 
							syl3anc | 
							 |-  ( ph -> P .<_ ( P .\/ ( Q .\/ R ) ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							dalempea | 
							 |-  ( ph -> P e. A )  | 
						
						
							| 18 | 
							
								3 4
							 | 
							hlatjass | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) )  | 
						
						
							| 19 | 
							
								9 17 10 11 18
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							breqtrrd | 
							 |-  ( ph -> P .<_ ( ( P .\/ Q ) .\/ R ) )  | 
						
						
							| 21 | 
							
								20 6
							 | 
							breqtrrdi | 
							 |-  ( ph -> P .<_ Y )  |