Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalempnes.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalempnes.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
8 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
9 |
1 4
|
dalemseb |
|- ( ph -> S e. ( Base ` K ) ) |
10 |
1 4
|
dalemteb |
|- ( ph -> T e. ( Base ` K ) ) |
11 |
|
simp321 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( S .\/ T ) ) |
12 |
1 11
|
sylbi |
|- ( ph -> -. C .<_ ( S .\/ T ) ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 2 3
|
latnlej2l |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ S e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ -. C .<_ ( S .\/ T ) ) -> -. C .<_ S ) |
15 |
7 8 9 10 12 14
|
syl131anc |
|- ( ph -> -. C .<_ S ) |
16 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
17 |
|
oveq1 |
|- ( P = S -> ( P .\/ S ) = ( S .\/ S ) ) |
18 |
17
|
breq2d |
|- ( P = S -> ( C .<_ ( P .\/ S ) <-> C .<_ ( S .\/ S ) ) ) |
19 |
16 18
|
syl5ibcom |
|- ( ph -> ( P = S -> C .<_ ( S .\/ S ) ) ) |
20 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
21 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
22 |
3 4
|
hlatjidm |
|- ( ( K e. HL /\ S e. A ) -> ( S .\/ S ) = S ) |
23 |
20 21 22
|
syl2anc |
|- ( ph -> ( S .\/ S ) = S ) |
24 |
23
|
breq2d |
|- ( ph -> ( C .<_ ( S .\/ S ) <-> C .<_ S ) ) |
25 |
19 24
|
sylibd |
|- ( ph -> ( P = S -> C .<_ S ) ) |
26 |
25
|
necon3bd |
|- ( ph -> ( -. C .<_ S -> P =/= S ) ) |
27 |
15 26
|
mpd |
|- ( ph -> P =/= S ) |