Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
					|
| dalema.a | |- A = ( Atoms ` K )  | 
					||
| Assertion | dalemqeb | |- ( ph -> Q e. ( Base ` K ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						|
| 2 | dalema.a | |- A = ( Atoms ` K )  | 
						|
| 3 | 1 | dalemqea | |- ( ph -> Q e. A )  | 
						
| 4 | eqid | |- ( Base ` K ) = ( Base ` K )  | 
						|
| 5 | 4 2 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) )  | 
						
| 6 | 3 5 | syl | |- ( ph -> Q e. ( Base ` K ) )  |