Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
|
dalemb.j | |- .\/ = ( join ` K ) |
||
dalemb.a | |- A = ( Atoms ` K ) |
||
Assertion | dalemqrprot | |- ( ph -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
|
2 | dalemb.j | |- .\/ = ( join ` K ) |
|
3 | dalemb.a | |- A = ( Atoms ` K ) |
|
4 | 1 | dalemkehl | |- ( ph -> K e. HL ) |
5 | 1 | dalemqea | |- ( ph -> Q e. A ) |
6 | 1 | dalemrea | |- ( ph -> R e. A ) |
7 | 1 | dalempea | |- ( ph -> P e. A ) |
8 | 2 3 | hlatjrot | |- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
9 | 4 5 6 7 8 | syl13anc | |- ( ph -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |