| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalemsly.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 6 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 7 | 
							
								1 4
							 | 
							dalemseb | 
							 |-  ( ph -> S e. ( Base ` K ) )  | 
						
						
							| 8 | 
							
								1 3 4
							 | 
							dalemtjueb | 
							 |-  ( ph -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 10 | 
							
								9 2 3
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> S .<_ ( S .\/ ( T .\/ U ) ) )  | 
						
						
							| 11 | 
							
								6 7 8 10
							 | 
							syl3anc | 
							 |-  ( ph -> S .<_ ( S .\/ ( T .\/ U ) ) )  | 
						
						
							| 12 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 13 | 
							
								1
							 | 
							dalemsea | 
							 |-  ( ph -> S e. A )  | 
						
						
							| 14 | 
							
								1
							 | 
							dalemtea | 
							 |-  ( ph -> T e. A )  | 
						
						
							| 15 | 
							
								1
							 | 
							dalemuea | 
							 |-  ( ph -> U e. A )  | 
						
						
							| 16 | 
							
								3 4
							 | 
							hlatjass | 
							 |-  ( ( K e. HL /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ T ) .\/ U ) = ( S .\/ ( T .\/ U ) ) )  | 
						
						
							| 17 | 
							
								12 13 14 15 16
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( S .\/ T ) .\/ U ) = ( S .\/ ( T .\/ U ) ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							breqtrrd | 
							 |-  ( ph -> S .<_ ( ( S .\/ T ) .\/ U ) )  | 
						
						
							| 19 | 
							
								18 5
							 | 
							breqtrrdi | 
							 |-  ( ph -> S .<_ Z )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( ph /\ Y = Z ) -> S .<_ Z )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ Y = Z ) -> Y = Z )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ Y = Z ) -> S .<_ Y )  |