Metamath Proof Explorer


Theorem dalemsly

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalema.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalemc.l
|- .<_ = ( le ` K )
dalemc.j
|- .\/ = ( join ` K )
dalemc.a
|- A = ( Atoms ` K )
dalemsly.z
|- Z = ( ( S .\/ T ) .\/ U )
Assertion dalemsly
|- ( ( ph /\ Y = Z ) -> S .<_ Y )

Proof

Step Hyp Ref Expression
1 dalema.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalemc.l
 |-  .<_ = ( le ` K )
3 dalemc.j
 |-  .\/ = ( join ` K )
4 dalemc.a
 |-  A = ( Atoms ` K )
5 dalemsly.z
 |-  Z = ( ( S .\/ T ) .\/ U )
6 1 dalemkelat
 |-  ( ph -> K e. Lat )
7 1 4 dalemseb
 |-  ( ph -> S e. ( Base ` K ) )
8 1 3 4 dalemtjueb
 |-  ( ph -> ( T .\/ U ) e. ( Base ` K ) )
9 eqid
 |-  ( Base ` K ) = ( Base ` K )
10 9 2 3 latlej1
 |-  ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> S .<_ ( S .\/ ( T .\/ U ) ) )
11 6 7 8 10 syl3anc
 |-  ( ph -> S .<_ ( S .\/ ( T .\/ U ) ) )
12 1 dalemkehl
 |-  ( ph -> K e. HL )
13 1 dalemsea
 |-  ( ph -> S e. A )
14 1 dalemtea
 |-  ( ph -> T e. A )
15 1 dalemuea
 |-  ( ph -> U e. A )
16 3 4 hlatjass
 |-  ( ( K e. HL /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ T ) .\/ U ) = ( S .\/ ( T .\/ U ) ) )
17 12 13 14 15 16 syl13anc
 |-  ( ph -> ( ( S .\/ T ) .\/ U ) = ( S .\/ ( T .\/ U ) ) )
18 11 17 breqtrrd
 |-  ( ph -> S .<_ ( ( S .\/ T ) .\/ U ) )
19 18 5 breqtrrdi
 |-  ( ph -> S .<_ Z )
20 19 adantr
 |-  ( ( ph /\ Y = Z ) -> S .<_ Z )
21 simpr
 |-  ( ( ph /\ Y = Z ) -> Y = Z )
22 20 21 breqtrrd
 |-  ( ( ph /\ Y = Z ) -> S .<_ Y )