Step |
Hyp |
Ref |
Expression |
1 |
|
dchr1.g |
|- G = ( DChr ` N ) |
2 |
|
dchr1.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchr1.o |
|- .1. = ( 0g ` G ) |
4 |
|
dchr1.u |
|- U = ( Unit ` Z ) |
5 |
|
dchr1.n |
|- ( ph -> N e. NN ) |
6 |
|
dchr1.a |
|- ( ph -> A e. U ) |
7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
8 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
9 |
|
eqid |
|- ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) |
10 |
1 2 7 8 4 9 5
|
dchr1cl |
|- ( ph -> ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) e. ( Base ` G ) ) |
11 |
|
eleq1w |
|- ( k = x -> ( k e. U <-> x e. U ) ) |
12 |
11
|
ifbid |
|- ( k = x -> if ( k e. U , 1 , 0 ) = if ( x e. U , 1 , 0 ) ) |
13 |
12
|
cbvmptv |
|- ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) = ( x e. ( Base ` Z ) |-> if ( x e. U , 1 , 0 ) ) |
14 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
15 |
1 2 7 8 4 13 14 10
|
dchrmulid2 |
|- ( ph -> ( ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ( +g ` G ) ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) |
16 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
17 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
18 |
7 14 3
|
isgrpid2 |
|- ( G e. Grp -> ( ( ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) e. ( Base ` G ) /\ ( ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ( +g ` G ) ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) <-> .1. = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) ) |
19 |
5 16 17 18
|
4syl |
|- ( ph -> ( ( ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) e. ( Base ` G ) /\ ( ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ( +g ` G ) ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) <-> .1. = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) ) |
20 |
10 15 19
|
mpbi2and |
|- ( ph -> .1. = ( k e. ( Base ` Z ) |-> if ( k e. U , 1 , 0 ) ) ) |
21 |
|
simpr |
|- ( ( ph /\ k = A ) -> k = A ) |
22 |
6
|
adantr |
|- ( ( ph /\ k = A ) -> A e. U ) |
23 |
21 22
|
eqeltrd |
|- ( ( ph /\ k = A ) -> k e. U ) |
24 |
23
|
iftrued |
|- ( ( ph /\ k = A ) -> if ( k e. U , 1 , 0 ) = 1 ) |
25 |
8 4
|
unitss |
|- U C_ ( Base ` Z ) |
26 |
25 6
|
sselid |
|- ( ph -> A e. ( Base ` Z ) ) |
27 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
28 |
20 24 26 27
|
fvmptd |
|- ( ph -> ( .1. ` A ) = 1 ) |