Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
4 |
|
dchrn0.b |
|- B = ( Base ` Z ) |
5 |
|
dchrn0.u |
|- U = ( Unit ` Z ) |
6 |
|
dchr1cl.o |
|- .1. = ( k e. B |-> if ( k e. U , 1 , 0 ) ) |
7 |
|
dchr1cl.n |
|- ( ph -> N e. NN ) |
8 |
|
eqidd |
|- ( k = x -> 1 = 1 ) |
9 |
|
eqidd |
|- ( k = y -> 1 = 1 ) |
10 |
|
eqidd |
|- ( k = ( x ( .r ` Z ) y ) -> 1 = 1 ) |
11 |
|
eqidd |
|- ( k = ( 1r ` Z ) -> 1 = 1 ) |
12 |
|
1cnd |
|- ( ( ph /\ k e. U ) -> 1 e. CC ) |
13 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
14 |
13
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
15 |
14
|
a1i |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> 1 = ( 1 x. 1 ) ) |
16 |
|
eqidd |
|- ( ph -> 1 = 1 ) |
17 |
1 2 4 5 7 3 8 9 10 11 12 15 16
|
dchrelbasd |
|- ( ph -> ( k e. B |-> if ( k e. U , 1 , 0 ) ) e. D ) |
18 |
6 17
|
eqeltrid |
|- ( ph -> .1. e. D ) |