Step |
Hyp |
Ref |
Expression |
1 |
|
dchr2sum.g |
|- G = ( DChr ` N ) |
2 |
|
dchr2sum.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchr2sum.d |
|- D = ( Base ` G ) |
4 |
|
dchr2sum.b |
|- B = ( Base ` Z ) |
5 |
|
dchr2sum.x |
|- ( ph -> X e. D ) |
6 |
|
dchr2sum.y |
|- ( ph -> Y e. D ) |
7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
8 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
9 |
5 8
|
syl |
|- ( ph -> N e. NN ) |
10 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
11 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
12 |
9 10 11
|
3syl |
|- ( ph -> G e. Grp ) |
13 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
14 |
3 13
|
grpsubcl |
|- ( ( G e. Grp /\ X e. D /\ Y e. D ) -> ( X ( -g ` G ) Y ) e. D ) |
15 |
12 5 6 14
|
syl3anc |
|- ( ph -> ( X ( -g ` G ) Y ) e. D ) |
16 |
1 2 3 7 15 4
|
dchrsum |
|- ( ph -> sum_ a e. B ( ( X ( -g ` G ) Y ) ` a ) = if ( ( X ( -g ` G ) Y ) = ( 0g ` G ) , ( phi ` N ) , 0 ) ) |
17 |
5
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. D ) |
18 |
6
|
adantr |
|- ( ( ph /\ a e. B ) -> Y e. D ) |
19 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
20 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
21 |
3 19 20 13
|
grpsubval |
|- ( ( X e. D /\ Y e. D ) -> ( X ( -g ` G ) Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
22 |
17 18 21
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( X ( -g ` G ) Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
23 |
9
|
adantr |
|- ( ( ph /\ a e. B ) -> N e. NN ) |
24 |
23 10 11
|
3syl |
|- ( ( ph /\ a e. B ) -> G e. Grp ) |
25 |
3 20
|
grpinvcl |
|- ( ( G e. Grp /\ Y e. D ) -> ( ( invg ` G ) ` Y ) e. D ) |
26 |
24 18 25
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) e. D ) |
27 |
1 2 3 19 17 26
|
dchrmul |
|- ( ( ph /\ a e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X oF x. ( ( invg ` G ) ` Y ) ) ) |
28 |
22 27
|
eqtrd |
|- ( ( ph /\ a e. B ) -> ( X ( -g ` G ) Y ) = ( X oF x. ( ( invg ` G ) ` Y ) ) ) |
29 |
28
|
fveq1d |
|- ( ( ph /\ a e. B ) -> ( ( X ( -g ` G ) Y ) ` a ) = ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) ) |
30 |
1 2 3 4 17
|
dchrf |
|- ( ( ph /\ a e. B ) -> X : B --> CC ) |
31 |
30
|
ffnd |
|- ( ( ph /\ a e. B ) -> X Fn B ) |
32 |
1 2 3 4 26
|
dchrf |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) : B --> CC ) |
33 |
32
|
ffnd |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) Fn B ) |
34 |
4
|
fvexi |
|- B e. _V |
35 |
34
|
a1i |
|- ( ( ph /\ a e. B ) -> B e. _V ) |
36 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
37 |
|
fnfvof |
|- ( ( ( X Fn B /\ ( ( invg ` G ) ` Y ) Fn B ) /\ ( B e. _V /\ a e. B ) ) -> ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) = ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) ) |
38 |
31 33 35 36 37
|
syl22anc |
|- ( ( ph /\ a e. B ) -> ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) = ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) ) |
39 |
1 3 18 20
|
dchrinv |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) = ( * o. Y ) ) |
40 |
39
|
fveq1d |
|- ( ( ph /\ a e. B ) -> ( ( ( invg ` G ) ` Y ) ` a ) = ( ( * o. Y ) ` a ) ) |
41 |
1 2 3 4 18
|
dchrf |
|- ( ( ph /\ a e. B ) -> Y : B --> CC ) |
42 |
|
fvco3 |
|- ( ( Y : B --> CC /\ a e. B ) -> ( ( * o. Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
43 |
41 36 42
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( ( * o. Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
44 |
40 43
|
eqtrd |
|- ( ( ph /\ a e. B ) -> ( ( ( invg ` G ) ` Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
45 |
44
|
oveq2d |
|- ( ( ph /\ a e. B ) -> ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) = ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
46 |
29 38 45
|
3eqtrd |
|- ( ( ph /\ a e. B ) -> ( ( X ( -g ` G ) Y ) ` a ) = ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
47 |
46
|
sumeq2dv |
|- ( ph -> sum_ a e. B ( ( X ( -g ` G ) Y ) ` a ) = sum_ a e. B ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
48 |
3 7 13
|
grpsubeq0 |
|- ( ( G e. Grp /\ X e. D /\ Y e. D ) -> ( ( X ( -g ` G ) Y ) = ( 0g ` G ) <-> X = Y ) ) |
49 |
12 5 6 48
|
syl3anc |
|- ( ph -> ( ( X ( -g ` G ) Y ) = ( 0g ` G ) <-> X = Y ) ) |
50 |
49
|
ifbid |
|- ( ph -> if ( ( X ( -g ` G ) Y ) = ( 0g ` G ) , ( phi ` N ) , 0 ) = if ( X = Y , ( phi ` N ) , 0 ) ) |
51 |
16 47 50
|
3eqtr3d |
|- ( ph -> sum_ a e. B ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) = if ( X = Y , ( phi ` N ) , 0 ) ) |