| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchr2sum.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchr2sum.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchr2sum.d |
|- D = ( Base ` G ) |
| 4 |
|
dchr2sum.b |
|- B = ( Base ` Z ) |
| 5 |
|
dchr2sum.x |
|- ( ph -> X e. D ) |
| 6 |
|
dchr2sum.y |
|- ( ph -> Y e. D ) |
| 7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 8 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
| 9 |
5 8
|
syl |
|- ( ph -> N e. NN ) |
| 10 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
| 11 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 12 |
9 10 11
|
3syl |
|- ( ph -> G e. Grp ) |
| 13 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 14 |
3 13
|
grpsubcl |
|- ( ( G e. Grp /\ X e. D /\ Y e. D ) -> ( X ( -g ` G ) Y ) e. D ) |
| 15 |
12 5 6 14
|
syl3anc |
|- ( ph -> ( X ( -g ` G ) Y ) e. D ) |
| 16 |
1 2 3 7 15 4
|
dchrsum |
|- ( ph -> sum_ a e. B ( ( X ( -g ` G ) Y ) ` a ) = if ( ( X ( -g ` G ) Y ) = ( 0g ` G ) , ( phi ` N ) , 0 ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. D ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ a e. B ) -> Y e. D ) |
| 19 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 20 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 21 |
3 19 20 13
|
grpsubval |
|- ( ( X e. D /\ Y e. D ) -> ( X ( -g ` G ) Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 22 |
17 18 21
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( X ( -g ` G ) Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ a e. B ) -> N e. NN ) |
| 24 |
23 10 11
|
3syl |
|- ( ( ph /\ a e. B ) -> G e. Grp ) |
| 25 |
3 20
|
grpinvcl |
|- ( ( G e. Grp /\ Y e. D ) -> ( ( invg ` G ) ` Y ) e. D ) |
| 26 |
24 18 25
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) e. D ) |
| 27 |
1 2 3 19 17 26
|
dchrmul |
|- ( ( ph /\ a e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X oF x. ( ( invg ` G ) ` Y ) ) ) |
| 28 |
22 27
|
eqtrd |
|- ( ( ph /\ a e. B ) -> ( X ( -g ` G ) Y ) = ( X oF x. ( ( invg ` G ) ` Y ) ) ) |
| 29 |
28
|
fveq1d |
|- ( ( ph /\ a e. B ) -> ( ( X ( -g ` G ) Y ) ` a ) = ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) ) |
| 30 |
1 2 3 4 17
|
dchrf |
|- ( ( ph /\ a e. B ) -> X : B --> CC ) |
| 31 |
30
|
ffnd |
|- ( ( ph /\ a e. B ) -> X Fn B ) |
| 32 |
1 2 3 4 26
|
dchrf |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) : B --> CC ) |
| 33 |
32
|
ffnd |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) Fn B ) |
| 34 |
4
|
fvexi |
|- B e. _V |
| 35 |
34
|
a1i |
|- ( ( ph /\ a e. B ) -> B e. _V ) |
| 36 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
| 37 |
|
fnfvof |
|- ( ( ( X Fn B /\ ( ( invg ` G ) ` Y ) Fn B ) /\ ( B e. _V /\ a e. B ) ) -> ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) = ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) ) |
| 38 |
31 33 35 36 37
|
syl22anc |
|- ( ( ph /\ a e. B ) -> ( ( X oF x. ( ( invg ` G ) ` Y ) ) ` a ) = ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) ) |
| 39 |
1 3 18 20
|
dchrinv |
|- ( ( ph /\ a e. B ) -> ( ( invg ` G ) ` Y ) = ( * o. Y ) ) |
| 40 |
39
|
fveq1d |
|- ( ( ph /\ a e. B ) -> ( ( ( invg ` G ) ` Y ) ` a ) = ( ( * o. Y ) ` a ) ) |
| 41 |
1 2 3 4 18
|
dchrf |
|- ( ( ph /\ a e. B ) -> Y : B --> CC ) |
| 42 |
|
fvco3 |
|- ( ( Y : B --> CC /\ a e. B ) -> ( ( * o. Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
| 43 |
41 36 42
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( ( * o. Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
| 44 |
40 43
|
eqtrd |
|- ( ( ph /\ a e. B ) -> ( ( ( invg ` G ) ` Y ) ` a ) = ( * ` ( Y ` a ) ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ph /\ a e. B ) -> ( ( X ` a ) x. ( ( ( invg ` G ) ` Y ) ` a ) ) = ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
| 46 |
29 38 45
|
3eqtrd |
|- ( ( ph /\ a e. B ) -> ( ( X ( -g ` G ) Y ) ` a ) = ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
| 47 |
46
|
sumeq2dv |
|- ( ph -> sum_ a e. B ( ( X ( -g ` G ) Y ) ` a ) = sum_ a e. B ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) ) |
| 48 |
3 7 13
|
grpsubeq0 |
|- ( ( G e. Grp /\ X e. D /\ Y e. D ) -> ( ( X ( -g ` G ) Y ) = ( 0g ` G ) <-> X = Y ) ) |
| 49 |
12 5 6 48
|
syl3anc |
|- ( ph -> ( ( X ( -g ` G ) Y ) = ( 0g ` G ) <-> X = Y ) ) |
| 50 |
49
|
ifbid |
|- ( ph -> if ( ( X ( -g ` G ) Y ) = ( 0g ` G ) , ( phi ` N ) , 0 ) = if ( X = Y , ( phi ` N ) , 0 ) ) |
| 51 |
16 47 50
|
3eqtr3d |
|- ( ph -> sum_ a e. B ( ( X ` a ) x. ( * ` ( Y ` a ) ) ) = if ( X = Y , ( phi ` N ) , 0 ) ) |