Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
4 |
|
dchrelbas4.l |
|- L = ( ZRHom ` Z ) |
5 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
6 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
7 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
8 |
|
id |
|- ( N e. NN -> N e. NN ) |
9 |
1 2 6 7 8 3
|
dchrelbas2 |
|- ( N e. NN -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. y e. ( Base ` Z ) ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) ) ) ) |
10 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
11 |
10
|
adantr |
|- ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> N e. NN0 ) |
12 |
2 6 4
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
13 |
|
fveq2 |
|- ( ( L ` x ) = y -> ( X ` ( L ` x ) ) = ( X ` y ) ) |
14 |
13
|
neeq1d |
|- ( ( L ` x ) = y -> ( ( X ` ( L ` x ) ) =/= 0 <-> ( X ` y ) =/= 0 ) ) |
15 |
|
eleq1 |
|- ( ( L ` x ) = y -> ( ( L ` x ) e. ( Unit ` Z ) <-> y e. ( Unit ` Z ) ) ) |
16 |
14 15
|
imbi12d |
|- ( ( L ` x ) = y -> ( ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) ) ) |
17 |
16
|
cbvfo |
|- ( L : ZZ -onto-> ( Base ` Z ) -> ( A. x e. ZZ ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> A. y e. ( Base ` Z ) ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) ) ) |
18 |
11 12 17
|
3syl |
|- ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( A. x e. ZZ ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> A. y e. ( Base ` Z ) ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) ) ) |
19 |
|
df-ne |
|- ( ( X ` ( L ` x ) ) =/= 0 <-> -. ( X ` ( L ` x ) ) = 0 ) |
20 |
19
|
a1i |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( X ` ( L ` x ) ) =/= 0 <-> -. ( X ` ( L ` x ) ) = 0 ) ) |
21 |
2 7 4
|
znunit |
|- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( L ` x ) e. ( Unit ` Z ) <-> ( x gcd N ) = 1 ) ) |
22 |
11 21
|
sylan |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( L ` x ) e. ( Unit ` Z ) <-> ( x gcd N ) = 1 ) ) |
23 |
|
1red |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> 1 e. RR ) |
24 |
|
simpr |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> x e. ZZ ) |
25 |
|
simpll |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> N e. NN ) |
26 |
25
|
nnzd |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> N e. ZZ ) |
27 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
28 |
|
simpr |
|- ( ( x = 0 /\ N = 0 ) -> N = 0 ) |
29 |
28
|
necon3ai |
|- ( N =/= 0 -> -. ( x = 0 /\ N = 0 ) ) |
30 |
25 27 29
|
3syl |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> -. ( x = 0 /\ N = 0 ) ) |
31 |
|
gcdn0cl |
|- ( ( ( x e. ZZ /\ N e. ZZ ) /\ -. ( x = 0 /\ N = 0 ) ) -> ( x gcd N ) e. NN ) |
32 |
24 26 30 31
|
syl21anc |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( x gcd N ) e. NN ) |
33 |
32
|
nnred |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( x gcd N ) e. RR ) |
34 |
32
|
nnge1d |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> 1 <_ ( x gcd N ) ) |
35 |
23 33 34
|
leltned |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( 1 < ( x gcd N ) <-> ( x gcd N ) =/= 1 ) ) |
36 |
35
|
necon2bbid |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( x gcd N ) = 1 <-> -. 1 < ( x gcd N ) ) ) |
37 |
22 36
|
bitrd |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( L ` x ) e. ( Unit ` Z ) <-> -. 1 < ( x gcd N ) ) ) |
38 |
20 37
|
imbi12d |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> ( -. ( X ` ( L ` x ) ) = 0 -> -. 1 < ( x gcd N ) ) ) ) |
39 |
|
con34b |
|- ( ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) <-> ( -. ( X ` ( L ` x ) ) = 0 -> -. 1 < ( x gcd N ) ) ) |
40 |
38 39
|
bitr4di |
|- ( ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ x e. ZZ ) -> ( ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) |
41 |
40
|
ralbidva |
|- ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( A. x e. ZZ ( ( X ` ( L ` x ) ) =/= 0 -> ( L ` x ) e. ( Unit ` Z ) ) <-> A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) |
42 |
18 41
|
bitr3d |
|- ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( A. y e. ( Base ` Z ) ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) <-> A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) |
43 |
42
|
pm5.32da |
|- ( N e. NN -> ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. y e. ( Base ` Z ) ( ( X ` y ) =/= 0 -> y e. ( Unit ` Z ) ) ) <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) ) |
44 |
9 43
|
bitrd |
|- ( N e. NN -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) ) |
45 |
5 44
|
biadanii |
|- ( X e. D <-> ( N e. NN /\ ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) ) |
46 |
|
3anass |
|- ( ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) <-> ( N e. NN /\ ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) ) |
47 |
45 46
|
bitr4i |
|- ( X e. D <-> ( N e. NN /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ZZ ( 1 < ( x gcd N ) -> ( X ` ( L ` x ) ) = 0 ) ) ) |