Step |
Hyp |
Ref |
Expression |
1 |
|
dchrresb.g |
|- G = ( DChr ` N ) |
2 |
|
dchrresb.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrresb.b |
|- D = ( Base ` G ) |
4 |
|
dchrresb.u |
|- U = ( Unit ` Z ) |
5 |
|
dchrresb.x |
|- ( ph -> X e. D ) |
6 |
|
dchrresb.Y |
|- ( ph -> Y e. D ) |
7 |
|
eldif |
|- ( k e. ( ( Base ` Z ) \ U ) <-> ( k e. ( Base ` Z ) /\ -. k e. U ) ) |
8 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
9 |
5
|
adantr |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> X e. D ) |
10 |
|
simpr |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> k e. ( Base ` Z ) ) |
11 |
1 2 3 8 4 9 10
|
dchrn0 |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( ( X ` k ) =/= 0 <-> k e. U ) ) |
12 |
11
|
biimpd |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( ( X ` k ) =/= 0 -> k e. U ) ) |
13 |
12
|
necon1bd |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( -. k e. U -> ( X ` k ) = 0 ) ) |
14 |
13
|
impr |
|- ( ( ph /\ ( k e. ( Base ` Z ) /\ -. k e. U ) ) -> ( X ` k ) = 0 ) |
15 |
7 14
|
sylan2b |
|- ( ( ph /\ k e. ( ( Base ` Z ) \ U ) ) -> ( X ` k ) = 0 ) |
16 |
6
|
adantr |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> Y e. D ) |
17 |
1 2 3 8 4 16 10
|
dchrn0 |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( ( Y ` k ) =/= 0 <-> k e. U ) ) |
18 |
17
|
biimpd |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( ( Y ` k ) =/= 0 -> k e. U ) ) |
19 |
18
|
necon1bd |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( -. k e. U -> ( Y ` k ) = 0 ) ) |
20 |
19
|
impr |
|- ( ( ph /\ ( k e. ( Base ` Z ) /\ -. k e. U ) ) -> ( Y ` k ) = 0 ) |
21 |
7 20
|
sylan2b |
|- ( ( ph /\ k e. ( ( Base ` Z ) \ U ) ) -> ( Y ` k ) = 0 ) |
22 |
15 21
|
eqtr4d |
|- ( ( ph /\ k e. ( ( Base ` Z ) \ U ) ) -> ( X ` k ) = ( Y ` k ) ) |
23 |
22
|
ralrimiva |
|- ( ph -> A. k e. ( ( Base ` Z ) \ U ) ( X ` k ) = ( Y ` k ) ) |
24 |
1 2 3 8 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
25 |
24
|
ffnd |
|- ( ph -> X Fn ( Base ` Z ) ) |
26 |
1 2 3 8 6
|
dchrf |
|- ( ph -> Y : ( Base ` Z ) --> CC ) |
27 |
26
|
ffnd |
|- ( ph -> Y Fn ( Base ` Z ) ) |
28 |
|
eqfnfv |
|- ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) -> ( X = Y <-> A. k e. ( Base ` Z ) ( X ` k ) = ( Y ` k ) ) ) |
29 |
25 27 28
|
syl2anc |
|- ( ph -> ( X = Y <-> A. k e. ( Base ` Z ) ( X ` k ) = ( Y ` k ) ) ) |
30 |
8 4
|
unitss |
|- U C_ ( Base ` Z ) |
31 |
|
undif |
|- ( U C_ ( Base ` Z ) <-> ( U u. ( ( Base ` Z ) \ U ) ) = ( Base ` Z ) ) |
32 |
30 31
|
mpbi |
|- ( U u. ( ( Base ` Z ) \ U ) ) = ( Base ` Z ) |
33 |
32
|
raleqi |
|- ( A. k e. ( U u. ( ( Base ` Z ) \ U ) ) ( X ` k ) = ( Y ` k ) <-> A. k e. ( Base ` Z ) ( X ` k ) = ( Y ` k ) ) |
34 |
|
ralunb |
|- ( A. k e. ( U u. ( ( Base ` Z ) \ U ) ) ( X ` k ) = ( Y ` k ) <-> ( A. k e. U ( X ` k ) = ( Y ` k ) /\ A. k e. ( ( Base ` Z ) \ U ) ( X ` k ) = ( Y ` k ) ) ) |
35 |
33 34
|
bitr3i |
|- ( A. k e. ( Base ` Z ) ( X ` k ) = ( Y ` k ) <-> ( A. k e. U ( X ` k ) = ( Y ` k ) /\ A. k e. ( ( Base ` Z ) \ U ) ( X ` k ) = ( Y ` k ) ) ) |
36 |
29 35
|
bitrdi |
|- ( ph -> ( X = Y <-> ( A. k e. U ( X ` k ) = ( Y ` k ) /\ A. k e. ( ( Base ` Z ) \ U ) ( X ` k ) = ( Y ` k ) ) ) ) |
37 |
23 36
|
mpbiran2d |
|- ( ph -> ( X = Y <-> A. k e. U ( X ` k ) = ( Y ` k ) ) ) |