Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
9 |
|
dchrisum0flb.r |
|- ( ph -> X : ( Base ` Z ) --> RR ) |
10 |
|
dchrisum0flblem1.1 |
|- ( ph -> P e. Prime ) |
11 |
|
dchrisum0flblem1.2 |
|- ( ph -> A e. NN0 ) |
12 |
|
1red |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 1 e. RR ) |
13 |
|
0red |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ -. ( sqrt ` ( P ^ A ) ) e. NN ) -> 0 e. RR ) |
14 |
12 13
|
ifclda |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR ) |
15 |
|
1red |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 e. RR ) |
16 |
|
fzfid |
|- ( ph -> ( 0 ... A ) e. Fin ) |
17 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
18 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
19 |
1 18 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
20 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
21 |
17 19 20
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
22 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
23 |
10 22
|
syl |
|- ( ph -> P e. ZZ ) |
24 |
21 23
|
ffvelrnd |
|- ( ph -> ( L ` P ) e. ( Base ` Z ) ) |
25 |
9 24
|
ffvelrnd |
|- ( ph -> ( X ` ( L ` P ) ) e. RR ) |
26 |
|
elfznn0 |
|- ( i e. ( 0 ... A ) -> i e. NN0 ) |
27 |
|
reexpcl |
|- ( ( ( X ` ( L ` P ) ) e. RR /\ i e. NN0 ) -> ( ( X ` ( L ` P ) ) ^ i ) e. RR ) |
28 |
25 26 27
|
syl2an |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( X ` ( L ` P ) ) ^ i ) e. RR ) |
29 |
16 28
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) e. RR ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) e. RR ) |
31 |
|
breq1 |
|- ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 1 <_ 1 <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) ) |
32 |
|
breq1 |
|- ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) ) |
33 |
|
1le1 |
|- 1 <_ 1 |
34 |
|
0le1 |
|- 0 <_ 1 |
35 |
31 32 33 34
|
keephyp |
|- if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 |
36 |
35
|
a1i |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) |
37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
38 |
11 37
|
eleqtrdi |
|- ( ph -> A e. ( ZZ>= ` 0 ) ) |
39 |
|
fzn0 |
|- ( ( 0 ... A ) =/= (/) <-> A e. ( ZZ>= ` 0 ) ) |
40 |
38 39
|
sylibr |
|- ( ph -> ( 0 ... A ) =/= (/) ) |
41 |
|
hashnncl |
|- ( ( 0 ... A ) e. Fin -> ( ( # ` ( 0 ... A ) ) e. NN <-> ( 0 ... A ) =/= (/) ) ) |
42 |
16 41
|
syl |
|- ( ph -> ( ( # ` ( 0 ... A ) ) e. NN <-> ( 0 ... A ) =/= (/) ) ) |
43 |
40 42
|
mpbird |
|- ( ph -> ( # ` ( 0 ... A ) ) e. NN ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( # ` ( 0 ... A ) ) e. NN ) |
45 |
44
|
nnge1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 <_ ( # ` ( 0 ... A ) ) ) |
46 |
|
simpr |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( X ` ( L ` P ) ) = 1 ) |
47 |
46
|
oveq1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( ( X ` ( L ` P ) ) ^ i ) = ( 1 ^ i ) ) |
48 |
|
elfzelz |
|- ( i e. ( 0 ... A ) -> i e. ZZ ) |
49 |
|
1exp |
|- ( i e. ZZ -> ( 1 ^ i ) = 1 ) |
50 |
48 49
|
syl |
|- ( i e. ( 0 ... A ) -> ( 1 ^ i ) = 1 ) |
51 |
47 50
|
sylan9eq |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ i e. ( 0 ... A ) ) -> ( ( X ` ( L ` P ) ) ^ i ) = 1 ) |
52 |
51
|
sumeq2dv |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = sum_ i e. ( 0 ... A ) 1 ) |
53 |
|
fzfid |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( 0 ... A ) e. Fin ) |
54 |
|
ax-1cn |
|- 1 e. CC |
55 |
|
fsumconst |
|- ( ( ( 0 ... A ) e. Fin /\ 1 e. CC ) -> sum_ i e. ( 0 ... A ) 1 = ( ( # ` ( 0 ... A ) ) x. 1 ) ) |
56 |
53 54 55
|
sylancl |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) 1 = ( ( # ` ( 0 ... A ) ) x. 1 ) ) |
57 |
44
|
nncnd |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( # ` ( 0 ... A ) ) e. CC ) |
58 |
57
|
mulid1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( ( # ` ( 0 ... A ) ) x. 1 ) = ( # ` ( 0 ... A ) ) ) |
59 |
52 56 58
|
3eqtrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = ( # ` ( 0 ... A ) ) ) |
60 |
45 59
|
breqtrrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
61 |
14 15 30 36 60
|
letrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
62 |
|
oveq1 |
|- ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) ) |
63 |
62
|
breq1d |
|- ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) ) |
64 |
|
oveq1 |
|- ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) ) |
65 |
64
|
breq1d |
|- ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) ) |
66 |
|
1re |
|- 1 e. RR |
67 |
25
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) e. RR ) |
68 |
|
resubcl |
|- ( ( 1 e. RR /\ ( X ` ( L ` P ) ) e. RR ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) |
69 |
66 67 68
|
sylancr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) |
70 |
69
|
adantr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) |
71 |
70
|
leidd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) <_ ( 1 - ( X ` ( L ` P ) ) ) ) |
72 |
69
|
recnd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( X ` ( L ` P ) ) ) e. CC ) |
73 |
72
|
adantr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) e. CC ) |
74 |
73
|
mulid2d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( 1 - ( X ` ( L ` P ) ) ) ) |
75 |
|
nn0p1nn |
|- ( A e. NN0 -> ( A + 1 ) e. NN ) |
76 |
11 75
|
syl |
|- ( ph -> ( A + 1 ) e. NN ) |
77 |
76
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( A + 1 ) e. NN ) |
78 |
77
|
0expd |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( 0 ^ ( A + 1 ) ) = 0 ) |
79 |
|
simpr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( X ` ( L ` P ) ) = 0 ) |
80 |
79
|
oveq1d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( 0 ^ ( A + 1 ) ) ) |
81 |
78 80 79
|
3eqtr4d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) |
82 |
|
neg1cn |
|- -u 1 e. CC |
83 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A e. NN0 ) |
84 |
|
expp1 |
|- ( ( -u 1 e. CC /\ A e. NN0 ) -> ( -u 1 ^ ( A + 1 ) ) = ( ( -u 1 ^ A ) x. -u 1 ) ) |
85 |
82 83 84
|
sylancr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( A + 1 ) ) = ( ( -u 1 ^ A ) x. -u 1 ) ) |
86 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
87 |
10 86
|
syl |
|- ( ph -> P e. NN ) |
88 |
87 11
|
nnexpcld |
|- ( ph -> ( P ^ A ) e. NN ) |
89 |
88
|
nncnd |
|- ( ph -> ( P ^ A ) e. CC ) |
90 |
89
|
ad2antrr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P ^ A ) e. CC ) |
91 |
90
|
sqsqrtd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( sqrt ` ( P ^ A ) ) ^ 2 ) = ( P ^ A ) ) |
92 |
91
|
oveq2d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( P pCnt ( P ^ A ) ) ) |
93 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> P e. Prime ) |
94 |
|
nnq |
|- ( ( sqrt ` ( P ^ A ) ) e. NN -> ( sqrt ` ( P ^ A ) ) e. QQ ) |
95 |
94
|
adantl |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) e. QQ ) |
96 |
|
nnne0 |
|- ( ( sqrt ` ( P ^ A ) ) e. NN -> ( sqrt ` ( P ^ A ) ) =/= 0 ) |
97 |
96
|
adantl |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) =/= 0 ) |
98 |
|
2z |
|- 2 e. ZZ |
99 |
98
|
a1i |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 2 e. ZZ ) |
100 |
|
pcexp |
|- ( ( P e. Prime /\ ( ( sqrt ` ( P ^ A ) ) e. QQ /\ ( sqrt ` ( P ^ A ) ) =/= 0 ) /\ 2 e. ZZ ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) |
101 |
93 95 97 99 100
|
syl121anc |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) |
102 |
83
|
nn0zd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A e. ZZ ) |
103 |
|
pcid |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) |
104 |
93 102 103
|
syl2anc |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( P ^ A ) ) = A ) |
105 |
92 101 104
|
3eqtr3rd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) |
106 |
105
|
oveq2d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ A ) = ( -u 1 ^ ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) ) |
107 |
82
|
a1i |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> -u 1 e. CC ) |
108 |
|
simpr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) e. NN ) |
109 |
93 108
|
pccld |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. NN0 ) |
110 |
|
2nn0 |
|- 2 e. NN0 |
111 |
110
|
a1i |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 2 e. NN0 ) |
112 |
107 109 111
|
expmuld |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) |
113 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
114 |
113
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) |
115 |
109
|
nn0zd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. ZZ ) |
116 |
|
1exp |
|- ( ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. ZZ -> ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) |
117 |
115 116
|
syl |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) |
118 |
114 117
|
syl5eq |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) |
119 |
106 112 118
|
3eqtrd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ A ) = 1 ) |
120 |
119
|
oveq1d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ A ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
121 |
82
|
mulid2i |
|- ( 1 x. -u 1 ) = -u 1 |
122 |
120 121
|
eqtrdi |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ A ) x. -u 1 ) = -u 1 ) |
123 |
85 122
|
eqtrd |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( A + 1 ) ) = -u 1 ) |
124 |
123
|
adantr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( -u 1 ^ ( A + 1 ) ) = -u 1 ) |
125 |
25
|
recnd |
|- ( ph -> ( X ` ( L ` P ) ) e. CC ) |
126 |
125
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) e. CC ) |
127 |
126
|
ad2antrr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) e. CC ) |
128 |
127
|
negnegd |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u -u ( X ` ( L ` P ) ) = ( X ` ( L ` P ) ) ) |
129 |
|
simpr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) =/= 1 ) |
130 |
129
|
ad2antrr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) =/= 1 ) |
131 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> X e. D ) |
132 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
133 |
4 1 5 18 132 8 24
|
dchrn0 |
|- ( ph -> ( ( X ` ( L ` P ) ) =/= 0 <-> ( L ` P ) e. ( Unit ` Z ) ) ) |
134 |
133
|
ad2antrr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( X ` ( L ` P ) ) =/= 0 <-> ( L ` P ) e. ( Unit ` Z ) ) ) |
135 |
134
|
biimpa |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( L ` P ) e. ( Unit ` Z ) ) |
136 |
4 5 131 1 132 135
|
dchrabs |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( abs ` ( X ` ( L ` P ) ) ) = 1 ) |
137 |
|
eqeq1 |
|- ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = 1 <-> ( X ` ( L ` P ) ) = 1 ) ) |
138 |
136 137
|
syl5ibcom |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( X ` ( L ` P ) ) = 1 ) ) |
139 |
138
|
necon3ad |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) =/= 1 -> -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) ) ) |
140 |
130 139
|
mpd |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) ) |
141 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) e. RR ) |
142 |
141
|
absord |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) \/ ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) ) |
143 |
142
|
ord |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) ) |
144 |
140 143
|
mpd |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) |
145 |
144 136
|
eqtr3d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u ( X ` ( L ` P ) ) = 1 ) |
146 |
145
|
negeqd |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u -u ( X ` ( L ` P ) ) = -u 1 ) |
147 |
128 146
|
eqtr3d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) = -u 1 ) |
148 |
147
|
oveq1d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( -u 1 ^ ( A + 1 ) ) ) |
149 |
124 148 147
|
3eqtr4d |
|- ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) |
150 |
81 149
|
pm2.61dane |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) |
151 |
150
|
oveq2d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( 1 - ( X ` ( L ` P ) ) ) ) |
152 |
71 74 151
|
3brtr4d |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
153 |
72
|
mul02d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) = 0 ) |
154 |
|
peano2nn0 |
|- ( A e. NN0 -> ( A + 1 ) e. NN0 ) |
155 |
11 154
|
syl |
|- ( ph -> ( A + 1 ) e. NN0 ) |
156 |
25 155
|
reexpcld |
|- ( ph -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) |
157 |
156
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) |
158 |
157
|
recnd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. CC ) |
159 |
158
|
abscld |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) |
160 |
|
1red |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 1 e. RR ) |
161 |
157
|
leabsd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
162 |
155
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( A + 1 ) e. NN0 ) |
163 |
126 162
|
absexpd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) ) |
164 |
126
|
abscld |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( X ` ( L ` P ) ) ) e. RR ) |
165 |
126
|
absge0d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 <_ ( abs ` ( X ` ( L ` P ) ) ) ) |
166 |
4 5 1 18 8 24
|
dchrabs2 |
|- ( ph -> ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) |
167 |
166
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) |
168 |
|
exple1 |
|- ( ( ( ( abs ` ( X ` ( L ` P ) ) ) e. RR /\ 0 <_ ( abs ` ( X ` ( L ` P ) ) ) /\ ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) /\ ( A + 1 ) e. NN0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) <_ 1 ) |
169 |
164 165 167 162 168
|
syl31anc |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) <_ 1 ) |
170 |
163 169
|
eqbrtrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <_ 1 ) |
171 |
157 159 160 161 170
|
letrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) |
172 |
|
subge0 |
|- ( ( 1 e. RR /\ ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) -> ( 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) ) |
173 |
66 157 172
|
sylancr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) ) |
174 |
171 173
|
mpbird |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
175 |
153 174
|
eqbrtrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
176 |
175
|
adantr |
|- ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ -. ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
177 |
63 65 152 176
|
ifbothda |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
178 |
|
0re |
|- 0 e. RR |
179 |
66 178
|
ifcli |
|- if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR |
180 |
179
|
a1i |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR ) |
181 |
|
resubcl |
|- ( ( 1 e. RR /\ ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) |
182 |
66 157 181
|
sylancr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) |
183 |
67
|
leabsd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) <_ ( abs ` ( X ` ( L ` P ) ) ) ) |
184 |
67 164 160 183 167
|
letrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) <_ 1 ) |
185 |
129
|
necomd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 1 =/= ( X ` ( L ` P ) ) ) |
186 |
67 160 184 185
|
leneltd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) < 1 ) |
187 |
|
posdif |
|- ( ( ( X ` ( L ` P ) ) e. RR /\ 1 e. RR ) -> ( ( X ` ( L ` P ) ) < 1 <-> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) |
188 |
67 66 187
|
sylancl |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) < 1 <-> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) |
189 |
186 188
|
mpbid |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) |
190 |
|
lemuldiv |
|- ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR /\ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR /\ ( ( 1 - ( X ` ( L ` P ) ) ) e. RR /\ 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) -> ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) ) |
191 |
180 182 69 189 190
|
syl112anc |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) ) |
192 |
177 191
|
mpbid |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) |
193 |
11
|
nn0zd |
|- ( ph -> A e. ZZ ) |
194 |
|
fzval3 |
|- ( A e. ZZ -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) |
195 |
193 194
|
syl |
|- ( ph -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) |
196 |
195
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) |
197 |
196
|
sumeq1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = sum_ i e. ( 0 ..^ ( A + 1 ) ) ( ( X ` ( L ` P ) ) ^ i ) ) |
198 |
|
0nn0 |
|- 0 e. NN0 |
199 |
198
|
a1i |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 e. NN0 ) |
200 |
155 37
|
eleqtrdi |
|- ( ph -> ( A + 1 ) e. ( ZZ>= ` 0 ) ) |
201 |
200
|
adantr |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( A + 1 ) e. ( ZZ>= ` 0 ) ) |
202 |
126 129 199 201
|
geoserg |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ..^ ( A + 1 ) ) ( ( X ` ( L ` P ) ) ^ i ) = ( ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) |
203 |
126
|
exp0d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ 0 ) = 1 ) |
204 |
203
|
oveq1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) |
205 |
204
|
oveq1d |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) = ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) |
206 |
197 202 205
|
3eqtrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) |
207 |
192 206
|
breqtrrd |
|- ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
208 |
61 207
|
pm2.61dane |
|- ( ph -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
209 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|- ( ( P ^ A ) e. NN -> ( F ` ( P ^ A ) ) = sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) ) |
210 |
88 209
|
syl |
|- ( ph -> ( F ` ( P ^ A ) ) = sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) ) |
211 |
|
2fveq3 |
|- ( k = ( P ^ i ) -> ( X ` ( L ` k ) ) = ( X ` ( L ` ( P ^ i ) ) ) ) |
212 |
|
eqid |
|- ( b e. ( 0 ... A ) |-> ( P ^ b ) ) = ( b e. ( 0 ... A ) |-> ( P ^ b ) ) |
213 |
212
|
dvdsppwf1o |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( b e. ( 0 ... A ) |-> ( P ^ b ) ) : ( 0 ... A ) -1-1-onto-> { q e. NN | q || ( P ^ A ) } ) |
214 |
10 11 213
|
syl2anc |
|- ( ph -> ( b e. ( 0 ... A ) |-> ( P ^ b ) ) : ( 0 ... A ) -1-1-onto-> { q e. NN | q || ( P ^ A ) } ) |
215 |
|
oveq2 |
|- ( b = i -> ( P ^ b ) = ( P ^ i ) ) |
216 |
|
ovex |
|- ( P ^ b ) e. _V |
217 |
215 212 216
|
fvmpt3i |
|- ( i e. ( 0 ... A ) -> ( ( b e. ( 0 ... A ) |-> ( P ^ b ) ) ` i ) = ( P ^ i ) ) |
218 |
217
|
adantl |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( b e. ( 0 ... A ) |-> ( P ^ b ) ) ` i ) = ( P ^ i ) ) |
219 |
9
|
adantr |
|- ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> X : ( Base ` Z ) --> RR ) |
220 |
|
elrabi |
|- ( k e. { q e. NN | q || ( P ^ A ) } -> k e. NN ) |
221 |
220
|
nnzd |
|- ( k e. { q e. NN | q || ( P ^ A ) } -> k e. ZZ ) |
222 |
|
ffvelrn |
|- ( ( L : ZZ --> ( Base ` Z ) /\ k e. ZZ ) -> ( L ` k ) e. ( Base ` Z ) ) |
223 |
21 221 222
|
syl2an |
|- ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( L ` k ) e. ( Base ` Z ) ) |
224 |
219 223
|
ffvelrnd |
|- ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( X ` ( L ` k ) ) e. RR ) |
225 |
224
|
recnd |
|- ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( X ` ( L ` k ) ) e. CC ) |
226 |
211 16 214 218 225
|
fsumf1o |
|- ( ph -> sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) = sum_ i e. ( 0 ... A ) ( X ` ( L ` ( P ^ i ) ) ) ) |
227 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
228 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
229 |
228
|
subrgsubm |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
230 |
227 229
|
mp1i |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
231 |
26
|
adantl |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> i e. NN0 ) |
232 |
23
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> P e. ZZ ) |
233 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
234 |
|
zringmpg |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) |
235 |
234
|
eqcomi |
|- ( mulGrp ` ZZring ) = ( ( mulGrp ` CCfld ) |`s ZZ ) |
236 |
|
eqid |
|- ( .g ` ( mulGrp ` ZZring ) ) = ( .g ` ( mulGrp ` ZZring ) ) |
237 |
233 235 236
|
submmulg |
|- ( ( ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ i e. NN0 /\ P e. ZZ ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) |
238 |
230 231 232 237
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) |
239 |
87
|
nncnd |
|- ( ph -> P e. CC ) |
240 |
|
cnfldexp |
|- ( ( P e. CC /\ i e. NN0 ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( P ^ i ) ) |
241 |
239 26 240
|
syl2an |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( P ^ i ) ) |
242 |
238 241
|
eqtr3d |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` ZZring ) ) P ) = ( P ^ i ) ) |
243 |
242
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( L ` ( P ^ i ) ) ) |
244 |
1
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
245 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
246 |
17 244 245
|
3syl |
|- ( ph -> Z e. Ring ) |
247 |
2
|
zrhrhm |
|- ( Z e. Ring -> L e. ( ZZring RingHom Z ) ) |
248 |
|
eqid |
|- ( mulGrp ` ZZring ) = ( mulGrp ` ZZring ) |
249 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
250 |
248 249
|
rhmmhm |
|- ( L e. ( ZZring RingHom Z ) -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) |
251 |
246 247 250
|
3syl |
|- ( ph -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) |
252 |
251
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) |
253 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
254 |
248 253
|
mgpbas |
|- ZZ = ( Base ` ( mulGrp ` ZZring ) ) |
255 |
|
eqid |
|- ( .g ` ( mulGrp ` Z ) ) = ( .g ` ( mulGrp ` Z ) ) |
256 |
254 236 255
|
mhmmulg |
|- ( ( L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) /\ i e. NN0 /\ P e. ZZ ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) |
257 |
252 231 232 256
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) |
258 |
243 257
|
eqtr3d |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( P ^ i ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) |
259 |
258
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( L ` ( P ^ i ) ) ) = ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) ) |
260 |
4 1 5
|
dchrmhm |
|- D C_ ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) |
261 |
260 8
|
sselid |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
262 |
261
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
263 |
24
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` P ) e. ( Base ` Z ) ) |
264 |
249 18
|
mgpbas |
|- ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) |
265 |
264 255 233
|
mhmmulg |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ i e. NN0 /\ ( L ` P ) e. ( Base ` Z ) ) -> ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) = ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) ) |
266 |
262 231 263 265
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) = ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) ) |
267 |
|
cnfldexp |
|- ( ( ( X ` ( L ` P ) ) e. CC /\ i e. NN0 ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) |
268 |
125 26 267
|
syl2an |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) |
269 |
259 266 268
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( L ` ( P ^ i ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) |
270 |
269
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 0 ... A ) ( X ` ( L ` ( P ^ i ) ) ) = sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
271 |
210 226 270
|
3eqtrd |
|- ( ph -> ( F ` ( P ^ A ) ) = sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) |
272 |
208 271
|
breqtrrd |
|- ( ph -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ A ) ) ) |