| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
| 8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
| 9 |
|
dchrisum0flb.r |
|- ( ph -> X : ( Base ` Z ) --> RR ) |
| 10 |
|
dchrisum0flb.1 |
|- ( ph -> A e. ( ZZ>= ` 2 ) ) |
| 11 |
|
dchrisum0flb.2 |
|- ( ph -> P e. Prime ) |
| 12 |
|
dchrisum0flb.3 |
|- ( ph -> P || A ) |
| 13 |
|
dchrisum0flb.4 |
|- ( ph -> A. y e. ( 1 ..^ A ) if ( ( sqrt ` y ) e. NN , 1 , 0 ) <_ ( F ` y ) ) |
| 14 |
|
breq1 |
|- ( 1 = if ( ( sqrt ` A ) e. NN , 1 , 0 ) -> ( 1 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) <-> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) |
| 15 |
|
breq1 |
|- ( 0 = if ( ( sqrt ` A ) e. NN , 1 , 0 ) -> ( 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) <-> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) |
| 16 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 17 |
11
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. Prime ) |
| 18 |
|
nnq |
|- ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) e. QQ ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) e. QQ ) |
| 20 |
|
nnne0 |
|- ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) =/= 0 ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) =/= 0 ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
22
|
a1i |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. ZZ ) |
| 24 |
|
pcexp |
|- ( ( P e. Prime /\ ( ( sqrt ` A ) e. QQ /\ ( sqrt ` A ) =/= 0 ) /\ 2 e. ZZ ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` A ) ) ) ) |
| 25 |
17 19 21 23 24
|
syl121anc |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` A ) ) ) ) |
| 26 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
| 27 |
10 26
|
syl |
|- ( ph -> A e. NN ) |
| 28 |
27
|
nncnd |
|- ( ph -> A e. CC ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. CC ) |
| 30 |
29
|
sqsqrtd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 31 |
30
|
oveq2d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( P pCnt A ) ) |
| 32 |
|
2cnd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. CC ) |
| 33 |
|
simpr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) e. NN ) |
| 34 |
17 33
|
pccld |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( sqrt ` A ) ) e. NN0 ) |
| 35 |
34
|
nn0cnd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( sqrt ` A ) ) e. CC ) |
| 36 |
32 35
|
mulcomd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 2 x. ( P pCnt ( sqrt ` A ) ) ) = ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) |
| 37 |
25 31 36
|
3eqtr3rd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( P pCnt ( sqrt ` A ) ) x. 2 ) = ( P pCnt A ) ) |
| 38 |
37
|
oveq2d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) = ( P ^ ( P pCnt A ) ) ) |
| 39 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 40 |
17 39
|
syl |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. NN ) |
| 41 |
40
|
nncnd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. CC ) |
| 42 |
|
2nn0 |
|- 2 e. NN0 |
| 43 |
42
|
a1i |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. NN0 ) |
| 44 |
41 43 34
|
expmuld |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) = ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) |
| 45 |
38 44
|
eqtr3d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) |
| 46 |
45
|
fveq2d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) = ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) ) |
| 47 |
40 34
|
nnexpcld |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. NN ) |
| 48 |
47
|
nnrpd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR+ ) |
| 49 |
48
|
rprege0d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR /\ 0 <_ ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) ) |
| 50 |
|
sqrtsq |
|- ( ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR /\ 0 <_ ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) -> ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) |
| 51 |
49 50
|
syl |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) |
| 52 |
46 51
|
eqtrd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) |
| 53 |
52 47
|
eqeltrd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN ) |
| 54 |
53
|
iftrued |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) = 1 ) |
| 55 |
11 27
|
pccld |
|- ( ph -> ( P pCnt A ) e. NN0 ) |
| 56 |
1 2 3 4 5 6 7 8 9 11 55
|
dchrisum0flblem1 |
|- ( ph -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) |
| 58 |
54 57
|
eqbrtrrd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) |
| 59 |
|
pcdvds |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 60 |
11 27 59
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt A ) ) || A ) |
| 61 |
11 39
|
syl |
|- ( ph -> P e. NN ) |
| 62 |
61 55
|
nnexpcld |
|- ( ph -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 63 |
|
nndivdvds |
|- ( ( A e. NN /\ ( P ^ ( P pCnt A ) ) e. NN ) -> ( ( P ^ ( P pCnt A ) ) || A <-> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) ) |
| 64 |
27 62 63
|
syl2anc |
|- ( ph -> ( ( P ^ ( P pCnt A ) ) || A <-> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) ) |
| 65 |
60 64
|
mpbid |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) |
| 66 |
65
|
nnzd |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) |
| 68 |
27
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. NN ) |
| 69 |
68
|
nnrpd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. RR+ ) |
| 70 |
69
|
rprege0d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A e. RR /\ 0 <_ A ) ) |
| 71 |
62
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 72 |
71
|
nnrpd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) e. RR+ ) |
| 73 |
|
sqrtdiv |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( P ^ ( P pCnt A ) ) e. RR+ ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) = ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) ) |
| 74 |
70 72 73
|
syl2anc |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) = ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) ) |
| 75 |
|
nnz |
|- ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) e. ZZ ) |
| 76 |
|
znq |
|- ( ( ( sqrt ` A ) e. ZZ /\ ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN ) -> ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) e. QQ ) |
| 77 |
75 53 76
|
syl2an2 |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) e. QQ ) |
| 78 |
74 77
|
eqeltrd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. QQ ) |
| 79 |
|
zsqrtelqelz |
|- ( ( ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ /\ ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. QQ ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ ) |
| 80 |
67 78 79
|
syl2anc |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ ) |
| 81 |
65
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) |
| 82 |
81
|
nnrpd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. RR+ ) |
| 83 |
82
|
sqrtgt0d |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 0 < ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 84 |
|
elnnz |
|- ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN <-> ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ /\ 0 < ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 85 |
80 83 84
|
sylanbrc |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN ) |
| 86 |
85
|
iftrued |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) = 1 ) |
| 87 |
|
fveq2 |
|- ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( sqrt ` y ) = ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 88 |
87
|
eleq1d |
|- ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( ( sqrt ` y ) e. NN <-> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN ) ) |
| 89 |
88
|
ifbid |
|- ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> if ( ( sqrt ` y ) e. NN , 1 , 0 ) = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) |
| 90 |
|
fveq2 |
|- ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( F ` y ) = ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 91 |
89 90
|
breq12d |
|- ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( if ( ( sqrt ` y ) e. NN , 1 , 0 ) <_ ( F ` y ) <-> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 92 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 93 |
65 92
|
eleqtrdi |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ( ZZ>= ` 1 ) ) |
| 94 |
27
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 95 |
61
|
nnred |
|- ( ph -> P e. RR ) |
| 96 |
|
pcelnn |
|- ( ( P e. Prime /\ A e. NN ) -> ( ( P pCnt A ) e. NN <-> P || A ) ) |
| 97 |
11 27 96
|
syl2anc |
|- ( ph -> ( ( P pCnt A ) e. NN <-> P || A ) ) |
| 98 |
12 97
|
mpbird |
|- ( ph -> ( P pCnt A ) e. NN ) |
| 99 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 100 |
|
eluz2gt1 |
|- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
| 101 |
11 99 100
|
3syl |
|- ( ph -> 1 < P ) |
| 102 |
|
expgt1 |
|- ( ( P e. RR /\ ( P pCnt A ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( P pCnt A ) ) ) |
| 103 |
95 98 101 102
|
syl3anc |
|- ( ph -> 1 < ( P ^ ( P pCnt A ) ) ) |
| 104 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 105 |
|
0lt1 |
|- 0 < 1 |
| 106 |
105
|
a1i |
|- ( ph -> 0 < 1 ) |
| 107 |
62
|
nnred |
|- ( ph -> ( P ^ ( P pCnt A ) ) e. RR ) |
| 108 |
62
|
nngt0d |
|- ( ph -> 0 < ( P ^ ( P pCnt A ) ) ) |
| 109 |
27
|
nnred |
|- ( ph -> A e. RR ) |
| 110 |
27
|
nngt0d |
|- ( ph -> 0 < A ) |
| 111 |
|
ltdiv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( P ^ ( P pCnt A ) ) e. RR /\ 0 < ( P ^ ( P pCnt A ) ) ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < ( P ^ ( P pCnt A ) ) <-> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) ) |
| 112 |
104 106 107 108 109 110 111
|
syl222anc |
|- ( ph -> ( 1 < ( P ^ ( P pCnt A ) ) <-> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) ) |
| 113 |
103 112
|
mpbid |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) |
| 114 |
28
|
div1d |
|- ( ph -> ( A / 1 ) = A ) |
| 115 |
113 114
|
breqtrd |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) < A ) |
| 116 |
|
elfzo2 |
|- ( ( A / ( P ^ ( P pCnt A ) ) ) e. ( 1 ..^ A ) <-> ( ( A / ( P ^ ( P pCnt A ) ) ) e. ( ZZ>= ` 1 ) /\ A e. ZZ /\ ( A / ( P ^ ( P pCnt A ) ) ) < A ) ) |
| 117 |
93 94 115 116
|
syl3anbrc |
|- ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ( 1 ..^ A ) ) |
| 118 |
91 13 117
|
rspcdva |
|- ( ph -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 120 |
86 119
|
eqbrtrrd |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 121 |
|
1re |
|- 1 e. RR |
| 122 |
|
0le1 |
|- 0 <_ 1 |
| 123 |
121 122
|
pm3.2i |
|- ( 1 e. RR /\ 0 <_ 1 ) |
| 124 |
123
|
a1i |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 1 e. RR /\ 0 <_ 1 ) ) |
| 125 |
1 2 3 4 5 6 7 8 9
|
dchrisum0ff |
|- ( ph -> F : NN --> RR ) |
| 126 |
125 62
|
ffvelcdmd |
|- ( ph -> ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) |
| 128 |
125 65
|
ffvelcdmd |
|- ( ph -> ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) |
| 130 |
|
lemul12a |
|- ( ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) /\ ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) ) -> ( ( 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) /\ 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) |
| 131 |
124 127 124 129 130
|
syl22anc |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) /\ 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) |
| 132 |
58 120 131
|
mp2and |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 133 |
16 132
|
eqbrtrrid |
|- ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 134 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 135 |
|
0re |
|- 0 e. RR |
| 136 |
121 135
|
ifcli |
|- if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) e. RR |
| 137 |
136
|
a1i |
|- ( ph -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) e. RR ) |
| 138 |
|
breq2 |
|- ( 1 = if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) ) |
| 139 |
|
breq2 |
|- ( 0 = if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) ) |
| 140 |
|
0le0 |
|- 0 <_ 0 |
| 141 |
138 139 122 140
|
keephyp |
|- 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) |
| 142 |
141
|
a1i |
|- ( ph -> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) |
| 143 |
134 137 126 142 56
|
letrd |
|- ( ph -> 0 <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) |
| 144 |
121 135
|
ifcli |
|- if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) e. RR |
| 145 |
144
|
a1i |
|- ( ph -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) e. RR ) |
| 146 |
|
breq2 |
|- ( 1 = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) ) |
| 147 |
|
breq2 |
|- ( 0 = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) ) |
| 148 |
146 147 122 140
|
keephyp |
|- 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) |
| 149 |
148
|
a1i |
|- ( ph -> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) |
| 150 |
134 145 128 149 118
|
letrd |
|- ( ph -> 0 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 151 |
126 128 143 150
|
mulge0d |
|- ( ph -> 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 152 |
151
|
adantr |
|- ( ( ph /\ -. ( sqrt ` A ) e. NN ) -> 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 153 |
14 15 133 152
|
ifbothda |
|- ( ph -> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 154 |
62
|
nncnd |
|- ( ph -> ( P ^ ( P pCnt A ) ) e. CC ) |
| 155 |
62
|
nnne0d |
|- ( ph -> ( P ^ ( P pCnt A ) ) =/= 0 ) |
| 156 |
28 154 155
|
divcan2d |
|- ( ph -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) |
| 157 |
156
|
fveq2d |
|- ( ph -> ( F ` ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) = ( F ` A ) ) |
| 158 |
|
pcndvds2 |
|- ( ( P e. Prime /\ A e. NN ) -> -. P || ( A / ( P ^ ( P pCnt A ) ) ) ) |
| 159 |
11 27 158
|
syl2anc |
|- ( ph -> -. P || ( A / ( P ^ ( P pCnt A ) ) ) ) |
| 160 |
|
coprm |
|- ( ( P e. Prime /\ ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) -> ( -. P || ( A / ( P ^ ( P pCnt A ) ) ) <-> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) |
| 161 |
11 66 160
|
syl2anc |
|- ( ph -> ( -. P || ( A / ( P ^ ( P pCnt A ) ) ) <-> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) |
| 162 |
159 161
|
mpbid |
|- ( ph -> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) |
| 163 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 164 |
11 163
|
syl |
|- ( ph -> P e. ZZ ) |
| 165 |
|
rpexp1i |
|- ( ( P e. ZZ /\ ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) |
| 166 |
164 66 55 165
|
syl3anc |
|- ( ph -> ( ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) |
| 167 |
162 166
|
mpd |
|- ( ph -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) |
| 168 |
1 2 3 4 5 6 7 8 62 65 167
|
dchrisum0fmul |
|- ( ph -> ( F ` ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) = ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 169 |
157 168
|
eqtr3d |
|- ( ph -> ( F ` A ) = ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) |
| 170 |
153 169
|
breqtrrd |
|- ( ph -> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( F ` A ) ) |