Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
9 |
|
dchrisum0flb.r |
|- ( ph -> X : ( Base ` Z ) --> RR ) |
10 |
|
dchrisum0fno1.a |
|- ( ph -> ( x e. RR+ |-> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) e. O(1) ) |
11 |
|
logno1 |
|- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |
12 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
13 |
12
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
14 |
13
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
15 |
|
2cnd |
|- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
16 |
|
2ne0 |
|- 2 =/= 0 |
17 |
16
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 2 =/= 0 ) |
18 |
14 15 17
|
divcan2d |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
19 |
18
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
20 |
13
|
rehalfcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) / 2 ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) / 2 ) e. CC ) |
22 |
|
rpssre |
|- RR+ C_ RR |
23 |
|
2cn |
|- 2 e. CC |
24 |
|
o1const |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) |
25 |
22 23 24
|
mp2an |
|- ( x e. RR+ |-> 2 ) e. O(1) |
26 |
25
|
a1i |
|- ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) |
27 |
|
1red |
|- ( ph -> 1 e. RR ) |
28 |
|
sumex |
|- sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. _V |
29 |
28
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. _V ) |
30 |
20
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
31 |
12
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) |
32 |
|
log1 |
|- ( log ` 1 ) = 0 |
33 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
34 |
|
1rp |
|- 1 e. RR+ |
35 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
36 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
37 |
34 35 36
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
38 |
33 37
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
39 |
32 38
|
eqbrtrrid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
40 |
|
2re |
|- 2 e. RR |
41 |
40
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 2 e. RR ) |
42 |
|
2pos |
|- 0 < 2 |
43 |
42
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 < 2 ) |
44 |
|
divge0 |
|- ( ( ( ( log ` x ) e. RR /\ 0 <_ ( log ` x ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( log ` x ) / 2 ) ) |
45 |
31 39 41 43 44
|
syl22anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( log ` x ) / 2 ) ) |
46 |
30 45
|
absidd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` x ) / 2 ) ) = ( ( log ` x ) / 2 ) ) |
47 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
48 |
1 2 3 4 5 6 7 8 9
|
dchrisum0ff |
|- ( ph -> F : NN --> RR ) |
49 |
48
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> F : NN --> RR ) |
50 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) |
51 |
|
ffvelrn |
|- ( ( F : NN --> RR /\ k e. NN ) -> ( F ` k ) e. RR ) |
52 |
49 50 51
|
syl2an |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` k ) e. RR ) |
53 |
50
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) |
54 |
53
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. RR+ ) |
55 |
54
|
rpsqrtcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` k ) e. RR+ ) |
56 |
52 55
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( F ` k ) / ( sqrt ` k ) ) e. RR ) |
57 |
47 56
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. RR ) |
58 |
57
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. CC ) |
59 |
58
|
abscld |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) e. RR ) |
60 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` ( sqrt ` x ) ) ) e. Fin ) |
61 |
|
elfznn |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> i e. NN ) |
62 |
61
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> i e. NN ) |
63 |
62
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( 1 / i ) e. RR ) |
64 |
60 63
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) e. RR ) |
65 |
|
logsqrt |
|- ( x e. RR+ -> ( log ` ( sqrt ` x ) ) = ( ( log ` x ) / 2 ) ) |
66 |
65
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( sqrt ` x ) ) = ( ( log ` x ) / 2 ) ) |
67 |
|
rpsqrtcl |
|- ( x e. RR+ -> ( sqrt ` x ) e. RR+ ) |
68 |
67
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sqrt ` x ) e. RR+ ) |
69 |
|
harmoniclbnd |
|- ( ( sqrt ` x ) e. RR+ -> ( log ` ( sqrt ` x ) ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
70 |
68 69
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( sqrt ` x ) ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
71 |
66 70
|
eqbrtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
72 |
|
eqid |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) = ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) |
73 |
|
ovex |
|- ( m ^ 2 ) e. _V |
74 |
72 73
|
elrnmpti |
|- ( k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) <-> E. m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) k = ( m ^ 2 ) ) |
75 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> m e. NN ) |
76 |
75
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m e. NN ) |
77 |
76
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m e. RR+ ) |
78 |
77
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
79 |
|
sqrtsq |
|- ( ( m e. RR /\ 0 <_ m ) -> ( sqrt ` ( m ^ 2 ) ) = m ) |
80 |
78 79
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( m ^ 2 ) ) = m ) |
81 |
80 76
|
eqeltrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( m ^ 2 ) ) e. NN ) |
82 |
|
fveq2 |
|- ( k = ( m ^ 2 ) -> ( sqrt ` k ) = ( sqrt ` ( m ^ 2 ) ) ) |
83 |
82
|
eleq1d |
|- ( k = ( m ^ 2 ) -> ( ( sqrt ` k ) e. NN <-> ( sqrt ` ( m ^ 2 ) ) e. NN ) ) |
84 |
81 83
|
syl5ibrcom |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( k = ( m ^ 2 ) -> ( sqrt ` k ) e. NN ) ) |
85 |
84
|
rexlimdva |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( E. m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) k = ( m ^ 2 ) -> ( sqrt ` k ) e. NN ) ) |
86 |
74 85
|
syl5bi |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) -> ( sqrt ` k ) e. NN ) ) |
87 |
86
|
imp |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( sqrt ` k ) e. NN ) |
88 |
87
|
iftrued |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) = 1 ) |
89 |
88
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = ( 1 / ( sqrt ` k ) ) ) |
90 |
89
|
sumeq2dv |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( 1 / ( sqrt ` k ) ) ) |
91 |
|
fveq2 |
|- ( k = ( i ^ 2 ) -> ( sqrt ` k ) = ( sqrt ` ( i ^ 2 ) ) ) |
92 |
91
|
oveq2d |
|- ( k = ( i ^ 2 ) -> ( 1 / ( sqrt ` k ) ) = ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
93 |
76
|
nnsqcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) e. NN ) |
94 |
68
|
rpred |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sqrt ` x ) e. RR ) |
95 |
|
fznnfl |
|- ( ( sqrt ` x ) e. RR -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( m e. NN /\ m <_ ( sqrt ` x ) ) ) ) |
96 |
94 95
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( m e. NN /\ m <_ ( sqrt ` x ) ) ) ) |
97 |
96
|
simplbda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m <_ ( sqrt ` x ) ) |
98 |
68
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` x ) e. RR+ ) |
99 |
98
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( sqrt ` x ) e. RR /\ 0 <_ ( sqrt ` x ) ) ) |
100 |
|
le2sq |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( ( sqrt ` x ) e. RR /\ 0 <_ ( sqrt ` x ) ) ) -> ( m <_ ( sqrt ` x ) <-> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) ) |
101 |
78 99 100
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m <_ ( sqrt ` x ) <-> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) ) |
102 |
97 101
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) |
103 |
35
|
rpred |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
104 |
103
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> x e. RR ) |
105 |
104
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> x e. CC ) |
106 |
105
|
sqsqrtd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( sqrt ` x ) ^ 2 ) = x ) |
107 |
102 106
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) <_ x ) |
108 |
|
fznnfl |
|- ( x e. RR -> ( ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) <-> ( ( m ^ 2 ) e. NN /\ ( m ^ 2 ) <_ x ) ) ) |
109 |
104 108
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) <-> ( ( m ^ 2 ) e. NN /\ ( m ^ 2 ) <_ x ) ) ) |
110 |
93 107 109
|
mpbir2and |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) ) |
111 |
110
|
ex |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) ) ) |
112 |
75
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> m e. RR+ ) |
113 |
112
|
rprege0d |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
114 |
61
|
nnrpd |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> i e. RR+ ) |
115 |
114
|
rprege0d |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( i e. RR /\ 0 <_ i ) ) |
116 |
|
sq11 |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( i e. RR /\ 0 <_ i ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) |
117 |
113 115 116
|
syl2an |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) |
118 |
117
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) ) |
119 |
111 118
|
dom2lem |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) ) |
120 |
|
f1f1orn |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-onto-> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
121 |
119 120
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-onto-> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
122 |
|
oveq1 |
|- ( m = i -> ( m ^ 2 ) = ( i ^ 2 ) ) |
123 |
122 72 73
|
fvmpt3i |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ` i ) = ( i ^ 2 ) ) |
124 |
123
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ` i ) = ( i ^ 2 ) ) |
125 |
|
f1f |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) --> ( 1 ... ( |_ ` x ) ) ) |
126 |
|
frn |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) --> ( 1 ... ( |_ ` x ) ) -> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
127 |
119 125 126
|
3syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
128 |
127
|
sselda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> k e. ( 1 ... ( |_ ` x ) ) ) |
129 |
|
1re |
|- 1 e. RR |
130 |
|
0re |
|- 0 e. RR |
131 |
129 130
|
ifcli |
|- if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR |
132 |
|
rerpdivcl |
|- ( ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR /\ ( sqrt ` k ) e. RR+ ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. RR ) |
133 |
131 55 132
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. RR ) |
134 |
133
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. CC ) |
135 |
128 134
|
syldan |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. CC ) |
136 |
89 135
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( 1 / ( sqrt ` k ) ) e. CC ) |
137 |
92 60 121 124 136
|
fsumf1o |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( 1 / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
138 |
90 137
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
139 |
|
eldif |
|- ( k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) <-> ( k e. ( 1 ... ( |_ ` x ) ) /\ -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) |
140 |
50
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. NN ) |
141 |
140
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. CC ) |
142 |
141
|
sqsqrtd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) = k ) |
143 |
|
simprr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) e. NN ) |
144 |
|
fznnfl |
|- ( x e. RR -> ( k e. ( 1 ... ( |_ ` x ) ) <-> ( k e. NN /\ k <_ x ) ) ) |
145 |
103 144
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( k e. ( 1 ... ( |_ ` x ) ) <-> ( k e. NN /\ k <_ x ) ) ) |
146 |
145
|
simplbda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k <_ x ) |
147 |
146
|
adantrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k <_ x ) |
148 |
140
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. RR+ ) |
149 |
148
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( k e. RR /\ 0 <_ k ) ) |
150 |
35
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> x e. RR+ ) |
151 |
150
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( x e. RR /\ 0 <_ x ) ) |
152 |
|
sqrtle |
|- ( ( ( k e. RR /\ 0 <_ k ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( k <_ x <-> ( sqrt ` k ) <_ ( sqrt ` x ) ) ) |
153 |
149 151 152
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( k <_ x <-> ( sqrt ` k ) <_ ( sqrt ` x ) ) ) |
154 |
147 153
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) <_ ( sqrt ` x ) ) |
155 |
68
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` x ) e. RR+ ) |
156 |
155
|
rpred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` x ) e. RR ) |
157 |
|
fznnfl |
|- ( ( sqrt ` x ) e. RR -> ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( ( sqrt ` k ) e. NN /\ ( sqrt ` k ) <_ ( sqrt ` x ) ) ) ) |
158 |
156 157
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( ( sqrt ` k ) e. NN /\ ( sqrt ` k ) <_ ( sqrt ` x ) ) ) ) |
159 |
143 154 158
|
mpbir2and |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) |
160 |
142 140
|
eqeltrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) e. NN ) |
161 |
|
oveq1 |
|- ( m = ( sqrt ` k ) -> ( m ^ 2 ) = ( ( sqrt ` k ) ^ 2 ) ) |
162 |
72 161
|
elrnmpt1s |
|- ( ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ ( ( sqrt ` k ) ^ 2 ) e. NN ) -> ( ( sqrt ` k ) ^ 2 ) e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
163 |
159 160 162
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
164 |
142 163
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
165 |
164
|
expr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` k ) e. NN -> k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) |
166 |
165
|
con3d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) -> -. ( sqrt ` k ) e. NN ) ) |
167 |
166
|
impr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> -. ( sqrt ` k ) e. NN ) |
168 |
139 167
|
sylan2b |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> -. ( sqrt ` k ) e. NN ) |
169 |
168
|
iffalsed |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) = 0 ) |
170 |
169
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = ( 0 / ( sqrt ` k ) ) ) |
171 |
|
eldifi |
|- ( k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> k e. ( 1 ... ( |_ ` x ) ) ) |
172 |
171 55
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( sqrt ` k ) e. RR+ ) |
173 |
172
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( ( sqrt ` k ) e. CC /\ ( sqrt ` k ) =/= 0 ) ) |
174 |
|
div0 |
|- ( ( ( sqrt ` k ) e. CC /\ ( sqrt ` k ) =/= 0 ) -> ( 0 / ( sqrt ` k ) ) = 0 ) |
175 |
173 174
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( 0 / ( sqrt ` k ) ) = 0 ) |
176 |
170 175
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = 0 ) |
177 |
127 135 176 47
|
fsumss |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) ) |
178 |
62
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> i e. RR+ ) |
179 |
178
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( i e. RR /\ 0 <_ i ) ) |
180 |
|
sqrtsq |
|- ( ( i e. RR /\ 0 <_ i ) -> ( sqrt ` ( i ^ 2 ) ) = i ) |
181 |
179 180
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( i ^ 2 ) ) = i ) |
182 |
181
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( 1 / ( sqrt ` ( i ^ 2 ) ) ) = ( 1 / i ) ) |
183 |
182
|
sumeq2dv |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
184 |
138 177 183
|
3eqtr3d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
185 |
131
|
a1i |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR ) |
186 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> N e. NN ) |
187 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
188 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> X : ( Base ` Z ) --> RR ) |
189 |
1 2 186 4 5 6 7 187 188 53
|
dchrisum0flb |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) <_ ( F ` k ) ) |
190 |
185 52 55 189
|
lediv1dd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) <_ ( ( F ` k ) / ( sqrt ` k ) ) ) |
191 |
47 133 56 190
|
fsumle |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
192 |
184 191
|
eqbrtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
193 |
30 64 57 71 192
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
194 |
57
|
leabsd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
195 |
30 57 59 193 194
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
196 |
46 195
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` x ) / 2 ) ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
197 |
27 10 29 21 196
|
o1le |
|- ( ph -> ( x e. RR+ |-> ( ( log ` x ) / 2 ) ) e. O(1) ) |
198 |
15 21 26 197
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
199 |
19 198
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) |
200 |
11 199
|
mto |
|- -. ph |