Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
dchrisum0lem1.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) |
10 |
|
dchrisum0.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrisum0.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
12 |
|
dchrisum0.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) |
13 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
14 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) e. Fin ) |
15 |
|
fzfid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) e. Fin ) |
16 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
17 |
|
elfzuz |
|- ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) -> m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) |
18 |
16 17
|
anim12i |
|- ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) |
19 |
18
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) ) |
20 |
|
elfzuz |
|- ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) -> m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) |
21 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) -> d e. NN ) |
22 |
20 21
|
anim12ci |
|- ( ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) |
23 |
22
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> ( ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) ) |
24 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) -> m e. ZZ ) |
25 |
24
|
ad2antll |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> m e. ZZ ) |
26 |
25
|
zred |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> m e. RR ) |
27 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
28 |
|
2z |
|- 2 e. ZZ |
29 |
|
rpexpcl |
|- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
30 |
27 28 29
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
31 |
30
|
rpred |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x ^ 2 ) e. RR ) |
33 |
|
simprl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> d e. NN ) |
34 |
33
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> d e. RR+ ) |
35 |
26 32 34
|
lemuldivd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( m x. d ) <_ ( x ^ 2 ) <-> m <_ ( ( x ^ 2 ) / d ) ) ) |
36 |
33
|
nnred |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> d e. RR ) |
37 |
27
|
rprege0d |
|- ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
38 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
39 |
|
nn0p1nn |
|- ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) |
40 |
37 38 39
|
3syl |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
41 |
40
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
42 |
|
simprr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) |
43 |
|
eluznn |
|- ( ( ( ( |_ ` x ) + 1 ) e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> m e. NN ) |
45 |
44
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> m e. RR+ ) |
46 |
36 32 45
|
lemuldiv2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( m x. d ) <_ ( x ^ 2 ) <-> d <_ ( ( x ^ 2 ) / m ) ) ) |
47 |
35 46
|
bitr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( ( x ^ 2 ) / d ) <-> d <_ ( ( x ^ 2 ) / m ) ) ) |
48 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
49 |
48
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
50 |
49
|
sqvald |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) = ( x x. x ) ) |
51 |
50
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x ^ 2 ) = ( x x. x ) ) |
52 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> x e. RR+ ) |
53 |
52
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> x e. RR ) |
54 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
55 |
|
peano2re |
|- ( ( |_ ` x ) e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) |
56 |
53 54 55
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( |_ ` x ) + 1 ) e. RR ) |
57 |
|
fllep1 |
|- ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) |
58 |
53 57
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> x <_ ( ( |_ ` x ) + 1 ) ) |
59 |
|
eluzle |
|- ( m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) -> ( ( |_ ` x ) + 1 ) <_ m ) |
60 |
59
|
ad2antll |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( |_ ` x ) + 1 ) <_ m ) |
61 |
53 56 26 58 60
|
letrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> x <_ m ) |
62 |
53 26 52
|
lemul1d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x <_ m <-> ( x x. x ) <_ ( m x. x ) ) ) |
63 |
61 62
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x x. x ) <_ ( m x. x ) ) |
64 |
51 63
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x ^ 2 ) <_ ( m x. x ) ) |
65 |
32 53 45
|
ledivmuld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( ( x ^ 2 ) / m ) <_ x <-> ( x ^ 2 ) <_ ( m x. x ) ) ) |
66 |
64 65
|
mpbird |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / m ) <_ x ) |
67 |
|
nnre |
|- ( d e. NN -> d e. RR ) |
68 |
67
|
ad2antrl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> d e. RR ) |
69 |
32 44
|
nndivred |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / m ) e. RR ) |
70 |
|
letr |
|- ( ( d e. RR /\ ( ( x ^ 2 ) / m ) e. RR /\ x e. RR ) -> ( ( d <_ ( ( x ^ 2 ) / m ) /\ ( ( x ^ 2 ) / m ) <_ x ) -> d <_ x ) ) |
71 |
68 69 53 70
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( d <_ ( ( x ^ 2 ) / m ) /\ ( ( x ^ 2 ) / m ) <_ x ) -> d <_ x ) ) |
72 |
66 71
|
mpan2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d <_ ( ( x ^ 2 ) / m ) -> d <_ x ) ) |
73 |
47 72
|
sylbid |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( ( x ^ 2 ) / d ) -> d <_ x ) ) |
74 |
73
|
pm4.71rd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( ( x ^ 2 ) / d ) <-> ( d <_ x /\ m <_ ( ( x ^ 2 ) / d ) ) ) ) |
75 |
|
nnge1 |
|- ( d e. NN -> 1 <_ d ) |
76 |
75
|
ad2antrl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> 1 <_ d ) |
77 |
|
1re |
|- 1 e. RR |
78 |
|
0lt1 |
|- 0 < 1 |
79 |
77 78
|
pm3.2i |
|- ( 1 e. RR /\ 0 < 1 ) |
80 |
34
|
rpregt0d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d e. RR /\ 0 < d ) ) |
81 |
30
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x ^ 2 ) e. RR+ ) |
82 |
81
|
rpregt0d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) e. RR /\ 0 < ( x ^ 2 ) ) ) |
83 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( d e. RR /\ 0 < d ) /\ ( ( x ^ 2 ) e. RR /\ 0 < ( x ^ 2 ) ) ) -> ( 1 <_ d <-> ( ( x ^ 2 ) / d ) <_ ( ( x ^ 2 ) / 1 ) ) ) |
84 |
79 80 82 83
|
mp3an2i |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( 1 <_ d <-> ( ( x ^ 2 ) / d ) <_ ( ( x ^ 2 ) / 1 ) ) ) |
85 |
76 84
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / d ) <_ ( ( x ^ 2 ) / 1 ) ) |
86 |
32
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( x ^ 2 ) e. CC ) |
87 |
86
|
div1d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / 1 ) = ( x ^ 2 ) ) |
88 |
85 87
|
breqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / d ) <_ ( x ^ 2 ) ) |
89 |
|
simpl |
|- ( ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) -> d e. NN ) |
90 |
|
nndivre |
|- ( ( ( x ^ 2 ) e. RR /\ d e. NN ) -> ( ( x ^ 2 ) / d ) e. RR ) |
91 |
31 89 90
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( x ^ 2 ) / d ) e. RR ) |
92 |
|
letr |
|- ( ( m e. RR /\ ( ( x ^ 2 ) / d ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( m <_ ( ( x ^ 2 ) / d ) /\ ( ( x ^ 2 ) / d ) <_ ( x ^ 2 ) ) -> m <_ ( x ^ 2 ) ) ) |
93 |
26 91 32 92
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( m <_ ( ( x ^ 2 ) / d ) /\ ( ( x ^ 2 ) / d ) <_ ( x ^ 2 ) ) -> m <_ ( x ^ 2 ) ) ) |
94 |
88 93
|
mpan2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( ( x ^ 2 ) / d ) -> m <_ ( x ^ 2 ) ) ) |
95 |
47 94
|
sylbird |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d <_ ( ( x ^ 2 ) / m ) -> m <_ ( x ^ 2 ) ) ) |
96 |
95
|
pm4.71rd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d <_ ( ( x ^ 2 ) / m ) <-> ( m <_ ( x ^ 2 ) /\ d <_ ( ( x ^ 2 ) / m ) ) ) ) |
97 |
47 74 96
|
3bitr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( d <_ x /\ m <_ ( ( x ^ 2 ) / d ) ) <-> ( m <_ ( x ^ 2 ) /\ d <_ ( ( x ^ 2 ) / m ) ) ) ) |
98 |
|
fznnfl |
|- ( x e. RR -> ( d e. ( 1 ... ( |_ ` x ) ) <-> ( d e. NN /\ d <_ x ) ) ) |
99 |
98
|
baibd |
|- ( ( x e. RR /\ d e. NN ) -> ( d e. ( 1 ... ( |_ ` x ) ) <-> d <_ x ) ) |
100 |
53 33 99
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d e. ( 1 ... ( |_ ` x ) ) <-> d <_ x ) ) |
101 |
91
|
flcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( |_ ` ( ( x ^ 2 ) / d ) ) e. ZZ ) |
102 |
|
elfz5 |
|- ( ( m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) /\ ( |_ ` ( ( x ^ 2 ) / d ) ) e. ZZ ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) <-> m <_ ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
103 |
42 101 102
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) <-> m <_ ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
104 |
|
flge |
|- ( ( ( ( x ^ 2 ) / d ) e. RR /\ m e. ZZ ) -> ( m <_ ( ( x ^ 2 ) / d ) <-> m <_ ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
105 |
91 25 104
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( ( x ^ 2 ) / d ) <-> m <_ ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
106 |
103 105
|
bitr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) <-> m <_ ( ( x ^ 2 ) / d ) ) ) |
107 |
100 106
|
anbi12d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) <-> ( d <_ x /\ m <_ ( ( x ^ 2 ) / d ) ) ) ) |
108 |
32
|
flcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( |_ ` ( x ^ 2 ) ) e. ZZ ) |
109 |
|
elfz5 |
|- ( ( m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) /\ ( |_ ` ( x ^ 2 ) ) e. ZZ ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) <-> m <_ ( |_ ` ( x ^ 2 ) ) ) ) |
110 |
42 108 109
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) <-> m <_ ( |_ ` ( x ^ 2 ) ) ) ) |
111 |
|
flge |
|- ( ( ( x ^ 2 ) e. RR /\ m e. ZZ ) -> ( m <_ ( x ^ 2 ) <-> m <_ ( |_ ` ( x ^ 2 ) ) ) ) |
112 |
32 25 111
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m <_ ( x ^ 2 ) <-> m <_ ( |_ ` ( x ^ 2 ) ) ) ) |
113 |
110 112
|
bitr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) <-> m <_ ( x ^ 2 ) ) ) |
114 |
|
fznnfl |
|- ( ( ( x ^ 2 ) / m ) e. RR -> ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) <-> ( d e. NN /\ d <_ ( ( x ^ 2 ) / m ) ) ) ) |
115 |
114
|
baibd |
|- ( ( ( ( x ^ 2 ) / m ) e. RR /\ d e. NN ) -> ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) <-> d <_ ( ( x ^ 2 ) / m ) ) ) |
116 |
69 33 115
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) <-> d <_ ( ( x ^ 2 ) / m ) ) ) |
117 |
113 116
|
anbi12d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) <-> ( m <_ ( x ^ 2 ) /\ d <_ ( ( x ^ 2 ) / m ) ) ) ) |
118 |
97 107 117
|
3bitr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) ) -> ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) <-> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
119 |
118
|
ex |
|- ( ( ph /\ x e. RR+ ) -> ( ( d e. NN /\ m e. ( ZZ>= ` ( ( |_ ` x ) + 1 ) ) ) -> ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) <-> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) ) ) ) |
120 |
19 23 119
|
pm5.21ndd |
|- ( ( ph /\ x e. RR+ ) -> ( ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) <-> ( m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
121 |
|
ssun2 |
|- ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) C_ ( ( 1 ... ( |_ ` x ) ) u. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
122 |
40
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
123 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
124 |
122 123
|
eleqtrdi |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) |
125 |
|
dchrisum0lem1a |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x <_ ( ( x ^ 2 ) / d ) /\ ( |_ ` ( ( x ^ 2 ) / d ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) ) |
126 |
125
|
simprd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( ( x ^ 2 ) / d ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) |
127 |
|
fzsplit2 |
|- ( ( ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` ( ( x ^ 2 ) / d ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) = ( ( 1 ... ( |_ ` x ) ) u. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) ) |
128 |
124 126 127
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) = ( ( 1 ... ( |_ ` x ) ) u. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) ) |
129 |
121 128
|
sseqtrrid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) C_ ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
130 |
129
|
sselda |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) |
131 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
132 |
131 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
133 |
132
|
eldifad |
|- ( ph -> X e. D ) |
134 |
133
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> X e. D ) |
135 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) -> m e. ZZ ) |
136 |
135
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> m e. ZZ ) |
137 |
4 1 5 2 134 136
|
dchrzrhcl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
138 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) -> m e. NN ) |
139 |
138
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> m e. NN ) |
140 |
139
|
nnrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> m e. RR+ ) |
141 |
140
|
rpsqrtcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( sqrt ` m ) e. RR+ ) |
142 |
141
|
rpcnd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( sqrt ` m ) e. CC ) |
143 |
141
|
rpne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( sqrt ` m ) =/= 0 ) |
144 |
137 142 143
|
divcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
145 |
16
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) |
146 |
145
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. RR+ ) |
147 |
146
|
rpsqrtcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` d ) e. RR+ ) |
148 |
147
|
rpcnne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) |
149 |
148
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) |
150 |
149
|
simpld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( sqrt ` d ) e. CC ) |
151 |
149
|
simprd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( sqrt ` d ) =/= 0 ) |
152 |
144 150 151
|
divcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
153 |
130 152
|
syldan |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
154 |
153
|
anasss |
|- ( ( ( ph /\ x e. RR+ ) /\ ( d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
155 |
13 14 15 120 154
|
fsumcom2 |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
156 |
155
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) = ( x e. RR+ |-> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
157 |
77
|
a1i |
|- ( ph -> 1 e. RR ) |
158 |
|
2cn |
|- 2 e. CC |
159 |
27
|
rpsqrtcld |
|- ( ( ph /\ x e. RR+ ) -> ( sqrt ` x ) e. RR+ ) |
160 |
159
|
rpcnd |
|- ( ( ph /\ x e. RR+ ) -> ( sqrt ` x ) e. CC ) |
161 |
|
mulcl |
|- ( ( 2 e. CC /\ ( sqrt ` x ) e. CC ) -> ( 2 x. ( sqrt ` x ) ) e. CC ) |
162 |
158 160 161
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( sqrt ` x ) ) e. CC ) |
163 |
147
|
rprecred |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` d ) ) e. RR ) |
164 |
13 163
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) e. RR ) |
165 |
164
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) e. CC ) |
166 |
165 162
|
subcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) e. CC ) |
167 |
|
2re |
|- 2 e. RR |
168 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
169 |
10 168
|
sylib |
|- ( ph -> ( C e. RR /\ 0 <_ C ) ) |
170 |
169
|
simpld |
|- ( ph -> C e. RR ) |
171 |
|
remulcl |
|- ( ( 2 e. RR /\ C e. RR ) -> ( 2 x. C ) e. RR ) |
172 |
167 170 171
|
sylancr |
|- ( ph -> ( 2 x. C ) e. RR ) |
173 |
172
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. C ) e. RR ) |
174 |
173 159
|
rerpdivcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. C ) / ( sqrt ` x ) ) e. RR ) |
175 |
174
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. C ) / ( sqrt ` x ) ) e. CC ) |
176 |
162 166 175
|
adddird |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( 2 x. ( sqrt ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( ( ( 2 x. ( sqrt ` x ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
177 |
162 165
|
pncan3d |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. ( sqrt ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) ) |
178 |
177
|
oveq1d |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( 2 x. ( sqrt ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
179 |
|
2cnd |
|- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
180 |
179 160 175
|
mulassd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. ( sqrt ` x ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( 2 x. ( ( sqrt ` x ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
181 |
173
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. C ) e. CC ) |
182 |
159
|
rpne0d |
|- ( ( ph /\ x e. RR+ ) -> ( sqrt ` x ) =/= 0 ) |
183 |
181 160 182
|
divcan2d |
|- ( ( ph /\ x e. RR+ ) -> ( ( sqrt ` x ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( 2 x. C ) ) |
184 |
183
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( ( sqrt ` x ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) = ( 2 x. ( 2 x. C ) ) ) |
185 |
180 184
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. ( sqrt ` x ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( 2 x. ( 2 x. C ) ) ) |
186 |
185
|
oveq1d |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( 2 x. ( sqrt ` x ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) = ( ( 2 x. ( 2 x. C ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
187 |
176 178 186
|
3eqtr3d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( ( 2 x. ( 2 x. C ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
188 |
187
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) = ( x e. RR+ |-> ( ( 2 x. ( 2 x. C ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) ) |
189 |
|
remulcl |
|- ( ( 2 e. RR /\ ( 2 x. C ) e. RR ) -> ( 2 x. ( 2 x. C ) ) e. RR ) |
190 |
167 172 189
|
sylancr |
|- ( ph -> ( 2 x. ( 2 x. C ) ) e. RR ) |
191 |
190
|
recnd |
|- ( ph -> ( 2 x. ( 2 x. C ) ) e. CC ) |
192 |
191
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( 2 x. C ) ) e. CC ) |
193 |
166 175
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. CC ) |
194 |
|
rpssre |
|- RR+ C_ RR |
195 |
|
o1const |
|- ( ( RR+ C_ RR /\ ( 2 x. ( 2 x. C ) ) e. CC ) -> ( x e. RR+ |-> ( 2 x. ( 2 x. C ) ) ) e. O(1) ) |
196 |
194 191 195
|
sylancr |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( 2 x. C ) ) ) e. O(1) ) |
197 |
|
eqid |
|- ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) = ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) |
198 |
197
|
divsqrsum |
|- ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) e. dom ~~>r |
199 |
|
rlimdmo1 |
|- ( ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) e. dom ~~>r -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) e. O(1) ) |
200 |
198 199
|
mp1i |
|- ( ph -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) ) e. O(1) ) |
201 |
181 160 182
|
divrecd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. C ) / ( sqrt ` x ) ) = ( ( 2 x. C ) x. ( 1 / ( sqrt ` x ) ) ) ) |
202 |
201
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( ( 2 x. C ) / ( sqrt ` x ) ) ) = ( x e. RR+ |-> ( ( 2 x. C ) x. ( 1 / ( sqrt ` x ) ) ) ) ) |
203 |
159
|
rprecred |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / ( sqrt ` x ) ) e. RR ) |
204 |
172
|
recnd |
|- ( ph -> ( 2 x. C ) e. CC ) |
205 |
|
rlimconst |
|- ( ( RR+ C_ RR /\ ( 2 x. C ) e. CC ) -> ( x e. RR+ |-> ( 2 x. C ) ) ~~>r ( 2 x. C ) ) |
206 |
194 204 205
|
sylancr |
|- ( ph -> ( x e. RR+ |-> ( 2 x. C ) ) ~~>r ( 2 x. C ) ) |
207 |
|
sqrtlim |
|- ( x e. RR+ |-> ( 1 / ( sqrt ` x ) ) ) ~~>r 0 |
208 |
207
|
a1i |
|- ( ph -> ( x e. RR+ |-> ( 1 / ( sqrt ` x ) ) ) ~~>r 0 ) |
209 |
173 203 206 208
|
rlimmul |
|- ( ph -> ( x e. RR+ |-> ( ( 2 x. C ) x. ( 1 / ( sqrt ` x ) ) ) ) ~~>r ( ( 2 x. C ) x. 0 ) ) |
210 |
202 209
|
eqbrtrd |
|- ( ph -> ( x e. RR+ |-> ( ( 2 x. C ) / ( sqrt ` x ) ) ) ~~>r ( ( 2 x. C ) x. 0 ) ) |
211 |
|
rlimo1 |
|- ( ( x e. RR+ |-> ( ( 2 x. C ) / ( sqrt ` x ) ) ) ~~>r ( ( 2 x. C ) x. 0 ) -> ( x e. RR+ |-> ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. O(1) ) |
212 |
210 211
|
syl |
|- ( ph -> ( x e. RR+ |-> ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. O(1) ) |
213 |
166 175 200 212
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) e. O(1) ) |
214 |
192 193 196 213
|
o1add2 |
|- ( ph -> ( x e. RR+ |-> ( ( 2 x. ( 2 x. C ) ) + ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` x ) ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) e. O(1) ) |
215 |
188 214
|
eqeltrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) e. O(1) ) |
216 |
164 174
|
remulcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. RR ) |
217 |
15 153
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
218 |
13 217
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
219 |
218
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. RR ) |
220 |
216
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. CC ) |
221 |
220
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) e. RR ) |
222 |
217
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. RR ) |
223 |
13 222
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. RR ) |
224 |
13 217
|
fsumabs |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ sum_ d e. ( 1 ... ( |_ ` x ) ) ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
225 |
174
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. C ) / ( sqrt ` x ) ) e. RR ) |
226 |
163 225
|
remulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) e. RR ) |
227 |
130 144
|
syldan |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
228 |
15 227
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
229 |
228
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. RR ) |
230 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1b |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) <_ ( ( 2 x. C ) / ( sqrt ` x ) ) ) |
231 |
229 225 147 230
|
lediv1dd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) / ( sqrt ` d ) ) <_ ( ( ( 2 x. C ) / ( sqrt ` x ) ) / ( sqrt ` d ) ) ) |
232 |
147
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` d ) e. CC ) |
233 |
147
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` d ) =/= 0 ) |
234 |
228 232 233
|
absdivd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) = ( ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) / ( abs ` ( sqrt ` d ) ) ) ) |
235 |
15 232 227 233
|
fsumdivc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
236 |
235
|
fveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) = ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
237 |
147
|
rprege0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` d ) e. RR /\ 0 <_ ( sqrt ` d ) ) ) |
238 |
|
absid |
|- ( ( ( sqrt ` d ) e. RR /\ 0 <_ ( sqrt ` d ) ) -> ( abs ` ( sqrt ` d ) ) = ( sqrt ` d ) ) |
239 |
237 238
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sqrt ` d ) ) = ( sqrt ` d ) ) |
240 |
239
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) / ( abs ` ( sqrt ` d ) ) ) = ( ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) / ( sqrt ` d ) ) ) |
241 |
234 236 240
|
3eqtr3rd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) / ( sqrt ` d ) ) = ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
242 |
175
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. C ) / ( sqrt ` x ) ) e. CC ) |
243 |
242 232 233
|
divrec2d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( 2 x. C ) / ( sqrt ` x ) ) / ( sqrt ` d ) ) = ( ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
244 |
231 241 243
|
3brtr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ ( ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
245 |
13 222 226 244
|
fsumle |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
246 |
163
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` d ) ) e. CC ) |
247 |
13 175 246
|
fsummulc1 |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
248 |
245 247
|
breqtrrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( abs ` sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
249 |
219 223 216 224 248
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) |
250 |
216
|
leabsd |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) <_ ( abs ` ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
251 |
219 216 221 249 250
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ ( abs ` ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
252 |
251
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) <_ ( abs ` ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` d ) ) x. ( ( 2 x. C ) / ( sqrt ` x ) ) ) ) ) |
253 |
157 215 216 218 252
|
o1le |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( ( x ^ 2 ) / d ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |
254 |
156 253
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |