Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn |
|- ( D e. ( 1 ... ( |_ ` X ) ) -> D e. NN ) |
2 |
1
|
adantl |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> D e. NN ) |
3 |
2
|
nnred |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> D e. RR ) |
4 |
|
simpr |
|- ( ( ph /\ X e. RR+ ) -> X e. RR+ ) |
5 |
4
|
rpregt0d |
|- ( ( ph /\ X e. RR+ ) -> ( X e. RR /\ 0 < X ) ) |
6 |
5
|
adantr |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X e. RR /\ 0 < X ) ) |
7 |
6
|
simpld |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> X e. RR ) |
8 |
4
|
adantr |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> X e. RR+ ) |
9 |
8
|
rpge0d |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> 0 <_ X ) |
10 |
4
|
rpred |
|- ( ( ph /\ X e. RR+ ) -> X e. RR ) |
11 |
|
fznnfl |
|- ( X e. RR -> ( D e. ( 1 ... ( |_ ` X ) ) <-> ( D e. NN /\ D <_ X ) ) ) |
12 |
10 11
|
syl |
|- ( ( ph /\ X e. RR+ ) -> ( D e. ( 1 ... ( |_ ` X ) ) <-> ( D e. NN /\ D <_ X ) ) ) |
13 |
12
|
simplbda |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> D <_ X ) |
14 |
3 7 7 9 13
|
lemul2ad |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X x. D ) <_ ( X x. X ) ) |
15 |
|
rpcn |
|- ( X e. RR+ -> X e. CC ) |
16 |
15
|
adantl |
|- ( ( ph /\ X e. RR+ ) -> X e. CC ) |
17 |
16
|
sqvald |
|- ( ( ph /\ X e. RR+ ) -> ( X ^ 2 ) = ( X x. X ) ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X ^ 2 ) = ( X x. X ) ) |
19 |
14 18
|
breqtrrd |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X x. D ) <_ ( X ^ 2 ) ) |
20 |
|
2z |
|- 2 e. ZZ |
21 |
|
rpexpcl |
|- ( ( X e. RR+ /\ 2 e. ZZ ) -> ( X ^ 2 ) e. RR+ ) |
22 |
4 20 21
|
sylancl |
|- ( ( ph /\ X e. RR+ ) -> ( X ^ 2 ) e. RR+ ) |
23 |
22
|
rpred |
|- ( ( ph /\ X e. RR+ ) -> ( X ^ 2 ) e. RR ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X ^ 2 ) e. RR ) |
25 |
2
|
nnrpd |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> D e. RR+ ) |
26 |
7 24 25
|
lemuldivd |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( ( X x. D ) <_ ( X ^ 2 ) <-> X <_ ( ( X ^ 2 ) / D ) ) ) |
27 |
19 26
|
mpbid |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> X <_ ( ( X ^ 2 ) / D ) ) |
28 |
|
nndivre |
|- ( ( ( X ^ 2 ) e. RR /\ D e. NN ) -> ( ( X ^ 2 ) / D ) e. RR ) |
29 |
23 1 28
|
syl2an |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( ( X ^ 2 ) / D ) e. RR ) |
30 |
|
flword2 |
|- ( ( X e. RR /\ ( ( X ^ 2 ) / D ) e. RR /\ X <_ ( ( X ^ 2 ) / D ) ) -> ( |_ ` ( ( X ^ 2 ) / D ) ) e. ( ZZ>= ` ( |_ ` X ) ) ) |
31 |
7 29 27 30
|
syl3anc |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( |_ ` ( ( X ^ 2 ) / D ) ) e. ( ZZ>= ` ( |_ ` X ) ) ) |
32 |
27 31
|
jca |
|- ( ( ( ph /\ X e. RR+ ) /\ D e. ( 1 ... ( |_ ` X ) ) ) -> ( X <_ ( ( X ^ 2 ) / D ) /\ ( |_ ` ( ( X ^ 2 ) / D ) ) e. ( ZZ>= ` ( |_ ` X ) ) ) ) |