Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
dchrisum0lem1.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) |
10 |
|
dchrisum0.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrisum0.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
12 |
|
dchrisum0.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) |
13 |
|
dchrisum0lem2.h |
|- H = ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) |
14 |
|
dchrisum0lem2.u |
|- ( ph -> H ~~>r U ) |
15 |
|
dchrisum0lem2.k |
|- K = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
16 |
|
dchrisum0lem2.e |
|- ( ph -> E e. ( 0 [,) +oo ) ) |
17 |
|
dchrisum0lem2.t |
|- ( ph -> seq 1 ( + , K ) ~~> T ) |
18 |
|
dchrisum0lem2.3 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) ) |
19 |
|
2cnd |
|- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
20 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
21 |
20
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
22 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
23 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
24 |
23 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
25 |
24
|
eldifad |
|- ( ph -> X e. D ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
27 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. ZZ ) |
28 |
27
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. ZZ ) |
29 |
4 1 5 2 26 28
|
dchrzrhcl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
30 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) |
31 |
30
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. RR+ ) |
32 |
31
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) |
33 |
32
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. CC ) |
34 |
32
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m =/= 0 ) |
35 |
29 33 34
|
divcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
36 |
22 35
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) e. CC ) |
37 |
21 36
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. CC ) |
38 |
|
rpssre |
|- RR+ C_ RR |
39 |
|
2cn |
|- 2 e. CC |
40 |
|
o1const |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) |
41 |
38 39 40
|
mp2an |
|- ( x e. RR+ |-> 2 ) e. O(1) |
42 |
41
|
a1i |
|- ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) |
43 |
38
|
a1i |
|- ( ph -> RR+ C_ RR ) |
44 |
|
1red |
|- ( ph -> 1 e. RR ) |
45 |
|
elrege0 |
|- ( E e. ( 0 [,) +oo ) <-> ( E e. RR /\ 0 <_ E ) ) |
46 |
45
|
simplbi |
|- ( E e. ( 0 [,) +oo ) -> E e. RR ) |
47 |
16 46
|
syl |
|- ( ph -> E e. RR ) |
48 |
21 36
|
absmuld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( abs ` x ) x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) |
49 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
50 |
49
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
51 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
52 |
50 51
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` x ) = x ) |
53 |
52
|
oveq1d |
|- ( ( ph /\ x e. RR+ ) -> ( ( abs ` x ) x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) |
54 |
48 53
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) |
55 |
54
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) |
56 |
36
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) e. CC ) |
57 |
56
|
subid1d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) - 0 ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) |
58 |
30
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) |
59 |
|
2fveq3 |
|- ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) |
60 |
|
id |
|- ( a = m -> a = m ) |
61 |
59 60
|
oveq12d |
|- ( a = m -> ( ( X ` ( L ` a ) ) / a ) = ( ( X ` ( L ` m ) ) / m ) ) |
62 |
|
ovex |
|- ( ( X ` ( L ` a ) ) / a ) e. _V |
63 |
61 15 62
|
fvmpt3i |
|- ( m e. NN -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
64 |
58 63
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
65 |
64
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
66 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
67 |
66
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 < x ) ) |
68 |
67
|
simpld |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
69 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
70 |
|
flge1nn |
|- ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
71 |
68 69 70
|
syl2anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. NN ) |
72 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
73 |
71 72
|
eleqtrdi |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) |
74 |
35
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
75 |
65 73 74
|
fsumser |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) = ( seq 1 ( + , K ) ` ( |_ ` x ) ) ) |
76 |
|
eldifsni |
|- ( X e. ( D \ { .1. } ) -> X =/= .1. ) |
77 |
24 76
|
syl |
|- ( ph -> X =/= .1. ) |
78 |
1 2 3 4 5 6 25 77 15 16 17 18 7
|
dchrvmaeq0 |
|- ( ph -> ( X e. W <-> T = 0 ) ) |
79 |
8 78
|
mpbid |
|- ( ph -> T = 0 ) |
80 |
79
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> T = 0 ) |
81 |
80
|
eqcomd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 = T ) |
82 |
75 81
|
oveq12d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) - 0 ) = ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) |
83 |
57 82
|
eqtr3d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) = ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) |
84 |
83
|
fveq2d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) ) |
85 |
|
2fveq3 |
|- ( y = x -> ( seq 1 ( + , K ) ` ( |_ ` y ) ) = ( seq 1 ( + , K ) ` ( |_ ` x ) ) ) |
86 |
85
|
fvoveq1d |
|- ( y = x -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) ) |
87 |
|
oveq2 |
|- ( y = x -> ( E / y ) = ( E / x ) ) |
88 |
86 87
|
breq12d |
|- ( y = x -> ( ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) <-> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) <_ ( E / x ) ) ) |
89 |
18
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) ) |
90 |
|
1re |
|- 1 e. RR |
91 |
|
elicopnf |
|- ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) |
92 |
90 91
|
ax-mp |
|- ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) |
93 |
68 69 92
|
sylanbrc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. ( 1 [,) +oo ) ) |
94 |
88 89 93
|
rspcdva |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) <_ ( E / x ) ) |
95 |
84 94
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) |
96 |
56
|
abscld |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. RR ) |
97 |
47
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> E e. RR ) |
98 |
|
lemuldiv2 |
|- ( ( ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. RR /\ E e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E <-> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) ) |
99 |
96 97 67 98
|
syl3anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E <-> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) ) |
100 |
95 99
|
mpbird |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E ) |
101 |
55 100
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E ) |
102 |
43 37 44 47 101
|
elo1d |
|- ( ph -> ( x e. RR+ |-> ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. O(1) ) |
103 |
19 37 42 102
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) e. O(1) ) |
104 |
|
fzfid |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) e. Fin ) |
105 |
32
|
rpsqrtcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. RR+ ) |
106 |
105
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. CC ) |
107 |
105
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) =/= 0 ) |
108 |
29 106 107
|
divcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
109 |
108
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
110 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) -> d e. NN ) |
111 |
110
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. NN ) |
112 |
111
|
nnrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. RR+ ) |
113 |
112
|
rpsqrtcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) e. RR+ ) |
114 |
113
|
rpcnd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) e. CC ) |
115 |
113
|
rpne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) =/= 0 ) |
116 |
109 114 115
|
divcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
117 |
104 116
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
118 |
22 117
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
119 |
|
mulcl |
|- ( ( 2 e. CC /\ ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. CC ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. CC ) |
120 |
39 37 119
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. CC ) |
121 |
|
2re |
|- 2 e. RR |
122 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
123 |
|
2z |
|- 2 e. ZZ |
124 |
|
rpexpcl |
|- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
125 |
122 123 124
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
126 |
|
rpdivcl |
|- ( ( ( x ^ 2 ) e. RR+ /\ m e. RR+ ) -> ( ( x ^ 2 ) / m ) e. RR+ ) |
127 |
125 31 126
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) / m ) e. RR+ ) |
128 |
127
|
rpsqrtcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR+ ) |
129 |
128
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR ) |
130 |
|
remulcl |
|- ( ( 2 e. RR /\ ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. RR ) |
131 |
121 129 130
|
sylancr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. RR ) |
132 |
131
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. CC ) |
133 |
108 132
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) e. CC ) |
134 |
22 117 133
|
fsumsub |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
135 |
113
|
rpcnne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) |
136 |
|
reccl |
|- ( ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) -> ( 1 / ( sqrt ` d ) ) e. CC ) |
137 |
135 136
|
syl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( 1 / ( sqrt ` d ) ) e. CC ) |
138 |
104 137
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) e. CC ) |
139 |
108 138 132
|
subdid |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
140 |
|
fveq2 |
|- ( y = ( ( x ^ 2 ) / m ) -> ( |_ ` y ) = ( |_ ` ( ( x ^ 2 ) / m ) ) ) |
141 |
140
|
oveq2d |
|- ( y = ( ( x ^ 2 ) / m ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) |
142 |
141
|
sumeq1d |
|- ( y = ( ( x ^ 2 ) / m ) -> sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) |
143 |
|
fveq2 |
|- ( y = ( ( x ^ 2 ) / m ) -> ( sqrt ` y ) = ( sqrt ` ( ( x ^ 2 ) / m ) ) ) |
144 |
143
|
oveq2d |
|- ( y = ( ( x ^ 2 ) / m ) -> ( 2 x. ( sqrt ` y ) ) = ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) |
145 |
142 144
|
oveq12d |
|- ( y = ( ( x ^ 2 ) / m ) -> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
146 |
|
ovex |
|- ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) e. _V |
147 |
145 13 146
|
fvmpt3i |
|- ( ( ( x ^ 2 ) / m ) e. RR+ -> ( H ` ( ( x ^ 2 ) / m ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
148 |
127 147
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
149 |
148
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
150 |
109 114 115
|
divrecd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) |
151 |
150
|
sumeq2dv |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) |
152 |
104 108 137
|
fsummulc2 |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) |
153 |
151 152
|
eqtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) ) |
154 |
153
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
155 |
139 149 154
|
3eqtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
156 |
155
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
157 |
|
mulcl |
|- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
158 |
39 21 157
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. x ) e. CC ) |
159 |
22 158 35
|
fsummulc2 |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. x ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
160 |
19 21 36
|
mulassd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 2 x. x ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) |
161 |
158
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. x ) e. CC ) |
162 |
161 108 106 107
|
div12d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( 2 x. x ) / ( sqrt ` m ) ) ) ) |
163 |
105
|
rpcnne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) |
164 |
|
divdiv1 |
|- ( ( ( X ` ( L ` m ) ) e. CC /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) ) |
165 |
29 163 163 164
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) ) |
166 |
32
|
rprege0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
167 |
|
remsqsqrt |
|- ( ( m e. RR /\ 0 <_ m ) -> ( ( sqrt ` m ) x. ( sqrt ` m ) ) = m ) |
168 |
166 167
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) x. ( sqrt ` m ) ) = m ) |
169 |
168
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) = ( ( X ` ( L ` m ) ) / m ) ) |
170 |
165 169
|
eqtr2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) |
171 |
170
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( 2 x. x ) x. ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) ) |
172 |
125
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x ^ 2 ) e. RR+ ) |
173 |
172
|
rprege0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) ) |
174 |
|
sqrtdiv |
|- ( ( ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) /\ m e. RR+ ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) |
175 |
173 32 174
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) |
176 |
49
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 <_ x ) ) |
177 |
|
sqrtsq |
|- ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` ( x ^ 2 ) ) = x ) |
178 |
176 177
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( x ^ 2 ) ) = x ) |
179 |
178
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) = ( x / ( sqrt ` m ) ) ) |
180 |
175 179
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( x / ( sqrt ` m ) ) ) |
181 |
180
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) |
182 |
|
2cnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
183 |
21
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
184 |
|
divass |
|- ( ( 2 e. CC /\ x e. CC /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( ( 2 x. x ) / ( sqrt ` m ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) |
185 |
182 183 163 184
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) / ( sqrt ` m ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) |
186 |
181 185
|
eqtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( ( 2 x. x ) / ( sqrt ` m ) ) ) |
187 |
186
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( 2 x. x ) / ( sqrt ` m ) ) ) ) |
188 |
162 171 187
|
3eqtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
189 |
188
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
190 |
159 160 189
|
3eqtr3d |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) |
191 |
190
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) |
192 |
134 156 191
|
3eqtr4d |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) |
193 |
192
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) = ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) ) |
194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dchrisum0lem2a |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) ) |
195 |
193 194
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) e. O(1) ) |
196 |
118 120 195
|
o1dif |
|- ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) <-> ( x e. RR+ |-> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) e. O(1) ) ) |
197 |
103 196
|
mpbird |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |