Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
dchrisum0lem1.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) |
10 |
|
dchrisum0.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrisum0.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
12 |
|
dchrisum0.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) |
13 |
|
dchrisum0lem2.h |
|- H = ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) |
14 |
|
dchrisum0lem2.u |
|- ( ph -> H ~~>r U ) |
15 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
16 |
|
simpl |
|- ( ( ph /\ x e. RR+ ) -> ph ) |
17 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) |
18 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
19 |
18 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
20 |
19
|
eldifad |
|- ( ph -> X e. D ) |
21 |
20
|
adantr |
|- ( ( ph /\ m e. NN ) -> X e. D ) |
22 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
23 |
22
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. ZZ ) |
24 |
4 1 5 2 21 23
|
dchrzrhcl |
|- ( ( ph /\ m e. NN ) -> ( X ` ( L ` m ) ) e. CC ) |
25 |
|
nnrp |
|- ( m e. NN -> m e. RR+ ) |
26 |
25
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. RR+ ) |
27 |
26
|
rpsqrtcld |
|- ( ( ph /\ m e. NN ) -> ( sqrt ` m ) e. RR+ ) |
28 |
27
|
rpcnd |
|- ( ( ph /\ m e. NN ) -> ( sqrt ` m ) e. CC ) |
29 |
27
|
rpne0d |
|- ( ( ph /\ m e. NN ) -> ( sqrt ` m ) =/= 0 ) |
30 |
24 28 29
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
31 |
16 17 30
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
32 |
15 31
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
33 |
|
rlimcl |
|- ( H ~~>r U -> U e. CC ) |
34 |
14 33
|
syl |
|- ( ph -> U e. CC ) |
35 |
34
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> U e. CC ) |
36 |
|
0xr |
|- 0 e. RR* |
37 |
|
0lt1 |
|- 0 < 1 |
38 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
39 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
40 |
|
xrltletr |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ w e. RR* ) -> ( ( 0 < 1 /\ 1 <_ w ) -> 0 < w ) ) |
41 |
38 39 40
|
ixxss1 |
|- ( ( 0 e. RR* /\ 0 < 1 ) -> ( 1 [,) +oo ) C_ ( 0 (,) +oo ) ) |
42 |
36 37 41
|
mp2an |
|- ( 1 [,) +oo ) C_ ( 0 (,) +oo ) |
43 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
44 |
42 43
|
sseqtri |
|- ( 1 [,) +oo ) C_ RR+ |
45 |
|
resmpt |
|- ( ( 1 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) ) |
46 |
44 45
|
ax-mp |
|- ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
47 |
44
|
sseli |
|- ( x e. ( 1 [,) +oo ) -> x e. RR+ ) |
48 |
17
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) |
49 |
|
2fveq3 |
|- ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) |
50 |
|
fveq2 |
|- ( a = m -> ( sqrt ` a ) = ( sqrt ` m ) ) |
51 |
49 50
|
oveq12d |
|- ( a = m -> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
52 |
|
ovex |
|- ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) e. _V |
53 |
51 9 52
|
fvmpt3i |
|- ( m e. NN -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
54 |
48 53
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
55 |
47 54
|
sylanl2 |
|- ( ( ( ph /\ x e. ( 1 [,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
56 |
|
1re |
|- 1 e. RR |
57 |
|
elicopnf |
|- ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) |
58 |
56 57
|
ax-mp |
|- ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) |
59 |
|
flge1nn |
|- ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
60 |
58 59
|
sylbi |
|- ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. NN ) |
61 |
60
|
adantl |
|- ( ( ph /\ x e. ( 1 [,) +oo ) ) -> ( |_ ` x ) e. NN ) |
62 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
63 |
61 62
|
eleqtrdi |
|- ( ( ph /\ x e. ( 1 [,) +oo ) ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) |
64 |
47 31
|
sylanl2 |
|- ( ( ( ph /\ x e. ( 1 [,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) |
65 |
55 63 64
|
fsumser |
|- ( ( ph /\ x e. ( 1 [,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) = ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) |
66 |
65
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ) |
67 |
46 66
|
syl5eq |
|- ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ) |
68 |
|
fveq2 |
|- ( m = ( |_ ` x ) -> ( seq 1 ( + , F ) ` m ) = ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) |
69 |
|
rpssre |
|- RR+ C_ RR |
70 |
69
|
a1i |
|- ( ph -> RR+ C_ RR ) |
71 |
44 70
|
sstrid |
|- ( ph -> ( 1 [,) +oo ) C_ RR ) |
72 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
73 |
51
|
cbvmptv |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) = ( m e. NN |-> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
74 |
9 73
|
eqtri |
|- F = ( m e. NN |-> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |
75 |
30 74
|
fmptd |
|- ( ph -> F : NN --> CC ) |
76 |
75
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( F ` m ) e. CC ) |
77 |
62 72 76
|
serf |
|- ( ph -> seq 1 ( + , F ) : NN --> CC ) |
78 |
77
|
feqmptd |
|- ( ph -> seq 1 ( + , F ) = ( m e. NN |-> ( seq 1 ( + , F ) ` m ) ) ) |
79 |
78 11
|
eqbrtrrd |
|- ( ph -> ( m e. NN |-> ( seq 1 ( + , F ) ` m ) ) ~~> S ) |
80 |
77
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( seq 1 ( + , F ) ` m ) e. CC ) |
81 |
58
|
simprbi |
|- ( x e. ( 1 [,) +oo ) -> 1 <_ x ) |
82 |
81
|
adantl |
|- ( ( ph /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
83 |
62 68 71 72 79 80 82
|
climrlim2 |
|- ( ph -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ~~>r S ) |
84 |
|
rlimo1 |
|- ( ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ~~>r S -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) e. O(1) ) |
85 |
83 84
|
syl |
|- ( ph -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) e. O(1) ) |
86 |
67 85
|
eqeltrd |
|- ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) |
87 |
32
|
fmpttd |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) : RR+ --> CC ) |
88 |
|
1red |
|- ( ph -> 1 e. RR ) |
89 |
87 70 88
|
o1resb |
|- ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. O(1) <-> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) ) |
90 |
86 89
|
mpbird |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. O(1) ) |
91 |
|
o1const |
|- ( ( RR+ C_ RR /\ U e. CC ) -> ( x e. RR+ |-> U ) e. O(1) ) |
92 |
69 34 91
|
sylancr |
|- ( ph -> ( x e. RR+ |-> U ) e. O(1) ) |
93 |
32 35 90 92
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) e. O(1) ) |
94 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
95 |
|
2z |
|- 2 e. ZZ |
96 |
|
rpexpcl |
|- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
97 |
94 95 96
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
98 |
17
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. RR+ ) |
99 |
|
rpdivcl |
|- ( ( ( x ^ 2 ) e. RR+ /\ m e. RR+ ) -> ( ( x ^ 2 ) / m ) e. RR+ ) |
100 |
97 98 99
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) / m ) e. RR+ ) |
101 |
13
|
divsqrsumf |
|- H : RR+ --> RR |
102 |
101
|
ffvelrni |
|- ( ( ( x ^ 2 ) / m ) e. RR+ -> ( H ` ( ( x ^ 2 ) / m ) ) e. RR ) |
103 |
100 102
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) e. RR ) |
104 |
103
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) e. CC ) |
105 |
31 104
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) e. CC ) |
106 |
15 105
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) e. CC ) |
107 |
32 35
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) e. CC ) |
108 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> H ~~>r U ) |
109 |
108 33
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> U e. CC ) |
110 |
31 109
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) e. CC ) |
111 |
15 105 110
|
fsumsub |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) |
112 |
31 104 109
|
subdid |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) |
113 |
112
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) |
114 |
15 35 31
|
fsummulc1 |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) |
115 |
114
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) |
116 |
111 113 115
|
3eqtr4d |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) |
117 |
116
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) = ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) ) |
118 |
104 109
|
subcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) e. CC ) |
119 |
31 118
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. CC ) |
120 |
15 119
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. CC ) |
121 |
120
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) |
122 |
119
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) |
123 |
15 122
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) |
124 |
|
1red |
|- ( ( ph /\ x e. RR+ ) -> 1 e. RR ) |
125 |
15 119
|
fsumabs |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) ) |
126 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
127 |
126
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
128 |
127
|
simpld |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
129 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
130 |
128 129
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. RR ) |
131 |
130 94
|
rerpdivcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) e. RR ) |
132 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
133 |
132
|
rprecred |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR ) |
134 |
31
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. RR ) |
135 |
98
|
rpsqrtcld |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> ( sqrt ` m ) e. RR+ ) |
136 |
135
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. RR+ ) |
137 |
136
|
rprecred |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` m ) ) e. RR ) |
138 |
118
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. RR ) |
139 |
136 132
|
rpdivcld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. RR+ ) |
140 |
69 139
|
sselid |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. RR ) |
141 |
31
|
absge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) ) |
142 |
118
|
absge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) |
143 |
16 17 24
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
144 |
136
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. CC ) |
145 |
136
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) =/= 0 ) |
146 |
143 144 145
|
absdivd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( abs ` ( sqrt ` m ) ) ) ) |
147 |
136
|
rprege0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. RR /\ 0 <_ ( sqrt ` m ) ) ) |
148 |
|
absid |
|- ( ( ( sqrt ` m ) e. RR /\ 0 <_ ( sqrt ` m ) ) -> ( abs ` ( sqrt ` m ) ) = ( sqrt ` m ) ) |
149 |
147 148
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sqrt ` m ) ) = ( sqrt ` m ) ) |
150 |
149
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( X ` ( L ` m ) ) ) / ( abs ` ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) ) |
151 |
146 150
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) ) |
152 |
143
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( X ` ( L ` m ) ) ) e. RR ) |
153 |
|
1red |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
154 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
155 |
20
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
156 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
157 |
1 154 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
158 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
159 |
156 157 158
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
160 |
159
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> L : ZZ --> ( Base ` Z ) ) |
161 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. ZZ ) |
162 |
|
ffvelrn |
|- ( ( L : ZZ --> ( Base ` Z ) /\ m e. ZZ ) -> ( L ` m ) e. ( Base ` Z ) ) |
163 |
160 161 162
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` m ) e. ( Base ` Z ) ) |
164 |
4 5 1 154 155 163
|
dchrabs2 |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( X ` ( L ` m ) ) ) <_ 1 ) |
165 |
152 153 136 164
|
lediv1dd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) <_ ( 1 / ( sqrt ` m ) ) ) |
166 |
151 165
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) <_ ( 1 / ( sqrt ` m ) ) ) |
167 |
13 108
|
divsqrtsum2 |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ ( ( x ^ 2 ) / m ) e. RR+ ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) |
168 |
100 167
|
mpdan |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) |
169 |
97
|
rprege0d |
|- ( ( ph /\ x e. RR+ ) -> ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) ) |
170 |
|
sqrtdiv |
|- ( ( ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) /\ m e. RR+ ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) |
171 |
169 98 170
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) |
172 |
126
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 <_ x ) ) |
173 |
|
sqrtsq |
|- ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` ( x ^ 2 ) ) = x ) |
174 |
172 173
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( x ^ 2 ) ) = x ) |
175 |
174
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) = ( x / ( sqrt ` m ) ) ) |
176 |
171 175
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( x / ( sqrt ` m ) ) ) |
177 |
176
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( 1 / ( x / ( sqrt ` m ) ) ) ) |
178 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
179 |
178
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) |
180 |
136
|
rpcnne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) |
181 |
|
recdiv |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( 1 / ( x / ( sqrt ` m ) ) ) = ( ( sqrt ` m ) / x ) ) |
182 |
179 180 181
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( x / ( sqrt ` m ) ) ) = ( ( sqrt ` m ) / x ) ) |
183 |
177 182
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( ( sqrt ` m ) / x ) ) |
184 |
168 183
|
breqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( ( sqrt ` m ) / x ) ) |
185 |
134 137 138 140 141 142 166 184
|
lemul12ad |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) x. ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) |
186 |
31 118
|
absmuld |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) = ( ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) x. ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) ) |
187 |
|
1cnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
188 |
|
dmdcan |
|- ( ( ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ 1 e. CC ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( 1 / x ) ) |
189 |
180 179 187 188
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( 1 / x ) ) |
190 |
139
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. CC ) |
191 |
|
reccl |
|- ( ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) -> ( 1 / ( sqrt ` m ) ) e. CC ) |
192 |
180 191
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` m ) ) e. CC ) |
193 |
190 192
|
mulcomd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) |
194 |
189 193
|
eqtr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) = ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) |
195 |
185 186 194
|
3brtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( 1 / x ) ) |
196 |
15 122 133 195
|
fsumle |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) ) |
197 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
198 |
|
hashfz1 |
|- ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
199 |
127 197 198
|
3syl |
|- ( ( ph /\ x e. RR+ ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
200 |
199
|
oveq1d |
|- ( ( ph /\ x e. RR+ ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) |
201 |
94
|
rpreccld |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
202 |
201
|
rpcnd |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
203 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( 1 / x ) e. CC ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) |
204 |
15 202 203
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) |
205 |
130
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. CC ) |
206 |
178
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
207 |
206
|
simpld |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
208 |
206
|
simprd |
|- ( ( ph /\ x e. RR+ ) -> x =/= 0 ) |
209 |
205 207 208
|
divrecd |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) |
210 |
200 204 209
|
3eqtr4d |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( |_ ` x ) / x ) ) |
211 |
196 210
|
breqtrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( ( |_ ` x ) / x ) ) |
212 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
213 |
128 212
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) <_ x ) |
214 |
128
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
215 |
214
|
mulid1d |
|- ( ( ph /\ x e. RR+ ) -> ( x x. 1 ) = x ) |
216 |
213 215
|
breqtrrd |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) <_ ( x x. 1 ) ) |
217 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
218 |
217
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 < x ) ) |
219 |
|
ledivmul |
|- ( ( ( |_ ` x ) e. RR /\ 1 e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) |
220 |
130 124 218 219
|
syl3anc |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) |
221 |
216 220
|
mpbird |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) <_ 1 ) |
222 |
123 131 124 211 221
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) |
223 |
121 123 124 125 222
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) |
224 |
223
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) |
225 |
70 120 88 88 224
|
elo1d |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. O(1) ) |
226 |
117 225
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) e. O(1) ) |
227 |
106 107 226
|
o1dif |
|- ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) e. O(1) ) ) |
228 |
93 227
|
mpbird |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) ) |