Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
dchrisum0lem1.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) |
10 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
11 |
10 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
12 |
11
|
eldifad |
|- ( ph -> X e. D ) |
13 |
|
eldifsni |
|- ( X e. ( D \ { .1. } ) -> X =/= .1. ) |
14 |
11 13
|
syl |
|- ( ph -> X =/= .1. ) |
15 |
|
fveq2 |
|- ( n = x -> ( sqrt ` n ) = ( sqrt ` x ) ) |
16 |
15
|
oveq2d |
|- ( n = x -> ( 1 / ( sqrt ` n ) ) = ( 1 / ( sqrt ` x ) ) ) |
17 |
|
1nn |
|- 1 e. NN |
18 |
17
|
a1i |
|- ( ph -> 1 e. NN ) |
19 |
|
rpsqrtcl |
|- ( n e. RR+ -> ( sqrt ` n ) e. RR+ ) |
20 |
19
|
adantl |
|- ( ( ph /\ n e. RR+ ) -> ( sqrt ` n ) e. RR+ ) |
21 |
20
|
rprecred |
|- ( ( ph /\ n e. RR+ ) -> ( 1 / ( sqrt ` n ) ) e. RR ) |
22 |
|
simp3r |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> n <_ x ) |
23 |
|
simp2l |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> n e. RR+ ) |
24 |
23
|
rprege0d |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( n e. RR /\ 0 <_ n ) ) |
25 |
|
simp2r |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> x e. RR+ ) |
26 |
25
|
rprege0d |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( x e. RR /\ 0 <_ x ) ) |
27 |
|
sqrtle |
|- ( ( ( n e. RR /\ 0 <_ n ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( n <_ x <-> ( sqrt ` n ) <_ ( sqrt ` x ) ) ) |
28 |
24 26 27
|
syl2anc |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( n <_ x <-> ( sqrt ` n ) <_ ( sqrt ` x ) ) ) |
29 |
22 28
|
mpbid |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( sqrt ` n ) <_ ( sqrt ` x ) ) |
30 |
23
|
rpsqrtcld |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( sqrt ` n ) e. RR+ ) |
31 |
25
|
rpsqrtcld |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( sqrt ` x ) e. RR+ ) |
32 |
30 31
|
lerecd |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( ( sqrt ` n ) <_ ( sqrt ` x ) <-> ( 1 / ( sqrt ` x ) ) <_ ( 1 / ( sqrt ` n ) ) ) ) |
33 |
29 32
|
mpbid |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( 1 <_ n /\ n <_ x ) ) -> ( 1 / ( sqrt ` x ) ) <_ ( 1 / ( sqrt ` n ) ) ) |
34 |
|
sqrtlim |
|- ( n e. RR+ |-> ( 1 / ( sqrt ` n ) ) ) ~~>r 0 |
35 |
34
|
a1i |
|- ( ph -> ( n e. RR+ |-> ( 1 / ( sqrt ` n ) ) ) ~~>r 0 ) |
36 |
|
2fveq3 |
|- ( a = n -> ( X ` ( L ` a ) ) = ( X ` ( L ` n ) ) ) |
37 |
|
fveq2 |
|- ( a = n -> ( sqrt ` a ) = ( sqrt ` n ) ) |
38 |
37
|
oveq2d |
|- ( a = n -> ( 1 / ( sqrt ` a ) ) = ( 1 / ( sqrt ` n ) ) ) |
39 |
36 38
|
oveq12d |
|- ( a = n -> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) = ( ( X ` ( L ` n ) ) x. ( 1 / ( sqrt ` n ) ) ) ) |
40 |
39
|
cbvmptv |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) = ( n e. NN |-> ( ( X ` ( L ` n ) ) x. ( 1 / ( sqrt ` n ) ) ) ) |
41 |
1 2 3 4 5 6 12 14 16 18 21 33 35 40
|
dchrisum |
|- ( ph -> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t /\ A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) |
42 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. D ) |
43 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
44 |
43
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
45 |
4 1 5 2 42 44
|
dchrzrhcl |
|- ( ( ph /\ n e. NN ) -> ( X ` ( L ` n ) ) e. CC ) |
46 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
47 |
46
|
nnrpd |
|- ( ( ph /\ n e. NN ) -> n e. RR+ ) |
48 |
47
|
rpsqrtcld |
|- ( ( ph /\ n e. NN ) -> ( sqrt ` n ) e. RR+ ) |
49 |
48
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( sqrt ` n ) e. CC ) |
50 |
48
|
rpne0d |
|- ( ( ph /\ n e. NN ) -> ( sqrt ` n ) =/= 0 ) |
51 |
45 49 50
|
divrecd |
|- ( ( ph /\ n e. NN ) -> ( ( X ` ( L ` n ) ) / ( sqrt ` n ) ) = ( ( X ` ( L ` n ) ) x. ( 1 / ( sqrt ` n ) ) ) ) |
52 |
51
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( ( X ` ( L ` n ) ) / ( sqrt ` n ) ) ) = ( n e. NN |-> ( ( X ` ( L ` n ) ) x. ( 1 / ( sqrt ` n ) ) ) ) ) |
53 |
36 37
|
oveq12d |
|- ( a = n -> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) = ( ( X ` ( L ` n ) ) / ( sqrt ` n ) ) ) |
54 |
53
|
cbvmptv |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) = ( n e. NN |-> ( ( X ` ( L ` n ) ) / ( sqrt ` n ) ) ) |
55 |
9 54
|
eqtri |
|- F = ( n e. NN |-> ( ( X ` ( L ` n ) ) / ( sqrt ` n ) ) ) |
56 |
52 55 40
|
3eqtr4g |
|- ( ph -> F = ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) |
57 |
56
|
seqeq3d |
|- ( ph -> seq 1 ( + , F ) = seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ) |
58 |
57
|
breq1d |
|- ( ph -> ( seq 1 ( + , F ) ~~> t <-> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t ) ) |
59 |
58
|
adantr |
|- ( ( ph /\ c e. ( 0 [,) +oo ) ) -> ( seq 1 ( + , F ) ~~> t <-> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t ) ) |
60 |
|
2fveq3 |
|- ( y = x -> ( seq 1 ( + , F ) ` ( |_ ` y ) ) = ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) |
61 |
60
|
fvoveq1d |
|- ( y = x -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) = ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) ) |
62 |
|
fveq2 |
|- ( y = x -> ( sqrt ` y ) = ( sqrt ` x ) ) |
63 |
62
|
oveq2d |
|- ( y = x -> ( c / ( sqrt ` y ) ) = ( c / ( sqrt ` x ) ) ) |
64 |
61 63
|
breq12d |
|- ( y = x -> ( ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) <-> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) <_ ( c / ( sqrt ` x ) ) ) ) |
65 |
64
|
cbvralvw |
|- ( A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) <-> A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) <_ ( c / ( sqrt ` x ) ) ) |
66 |
56
|
ad2antrr |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> F = ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) |
67 |
66
|
seqeq3d |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> seq 1 ( + , F ) = seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ) |
68 |
67
|
fveq1d |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( seq 1 ( + , F ) ` ( |_ ` x ) ) = ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) ) |
69 |
68
|
fvoveq1d |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) = ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) ) |
70 |
|
elrege0 |
|- ( c e. ( 0 [,) +oo ) <-> ( c e. RR /\ 0 <_ c ) ) |
71 |
70
|
simplbi |
|- ( c e. ( 0 [,) +oo ) -> c e. RR ) |
72 |
71
|
ad2antlr |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> c e. RR ) |
73 |
72
|
recnd |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> c e. CC ) |
74 |
|
1re |
|- 1 e. RR |
75 |
|
elicopnf |
|- ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) |
76 |
74 75
|
ax-mp |
|- ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) |
77 |
76
|
simplbi |
|- ( x e. ( 1 [,) +oo ) -> x e. RR ) |
78 |
77
|
adantl |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> x e. RR ) |
79 |
|
0red |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> 0 e. RR ) |
80 |
|
1red |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> 1 e. RR ) |
81 |
|
0lt1 |
|- 0 < 1 |
82 |
81
|
a1i |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> 0 < 1 ) |
83 |
76
|
simprbi |
|- ( x e. ( 1 [,) +oo ) -> 1 <_ x ) |
84 |
83
|
adantl |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
85 |
79 80 78 82 84
|
ltletrd |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> 0 < x ) |
86 |
78 85
|
elrpd |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> x e. RR+ ) |
87 |
86
|
rpsqrtcld |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( sqrt ` x ) e. RR+ ) |
88 |
87
|
rpcnd |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( sqrt ` x ) e. CC ) |
89 |
87
|
rpne0d |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( sqrt ` x ) =/= 0 ) |
90 |
73 88 89
|
divrecd |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( c / ( sqrt ` x ) ) = ( c x. ( 1 / ( sqrt ` x ) ) ) ) |
91 |
69 90
|
breq12d |
|- ( ( ( ph /\ c e. ( 0 [,) +oo ) ) /\ x e. ( 1 [,) +oo ) ) -> ( ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) <_ ( c / ( sqrt ` x ) ) <-> ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) |
92 |
91
|
ralbidva |
|- ( ( ph /\ c e. ( 0 [,) +oo ) ) -> ( A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` x ) ) - t ) ) <_ ( c / ( sqrt ` x ) ) <-> A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) |
93 |
65 92
|
syl5bb |
|- ( ( ph /\ c e. ( 0 [,) +oo ) ) -> ( A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) <-> A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) |
94 |
59 93
|
anbi12d |
|- ( ( ph /\ c e. ( 0 [,) +oo ) ) -> ( ( seq 1 ( + , F ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) ) <-> ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t /\ A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) ) |
95 |
94
|
rexbidva |
|- ( ph -> ( E. c e. ( 0 [,) +oo ) ( seq 1 ( + , F ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) ) <-> E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t /\ A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) ) |
96 |
95
|
exbidv |
|- ( ph -> ( E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , F ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) ) <-> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ~~> t /\ A. x e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( 1 / ( sqrt ` a ) ) ) ) ) ` ( |_ ` x ) ) - t ) ) <_ ( c x. ( 1 / ( sqrt ` x ) ) ) ) ) ) |
97 |
41 96
|
mpbird |
|- ( ph -> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , F ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - t ) ) <_ ( c / ( sqrt ` y ) ) ) ) |