Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
10 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
11 |
10 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
12 |
11
|
eldifad |
|- ( ph -> X e. D ) |
13 |
4 1 5 9 12
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
14 |
13
|
ffnd |
|- ( ph -> X Fn ( Base ` Z ) ) |
15 |
13
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( X ` x ) e. CC ) |
16 |
|
fvco3 |
|- ( ( X : ( Base ` Z ) --> CC /\ x e. ( Base ` Z ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
17 |
13 16
|
sylan |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
18 |
|
logno1 |
|- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |
19 |
|
1red |
|- ( ( ph /\ ( * o. X ) =/= X ) -> 1 e. RR ) |
20 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
21 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
22 |
1
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
23 |
21 22
|
syl |
|- ( ph -> Z e. CRing ) |
24 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
25 |
23 24
|
syl |
|- ( ph -> Z e. Ring ) |
26 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
27 |
20 26
|
1unit |
|- ( Z e. Ring -> ( 1r ` Z ) e. ( Unit ` Z ) ) |
28 |
25 27
|
syl |
|- ( ph -> ( 1r ` Z ) e. ( Unit ` Z ) ) |
29 |
|
eqid |
|- ( `' L " { ( 1r ` Z ) } ) = ( `' L " { ( 1r ` Z ) } ) |
30 |
|
eqidd |
|- ( ( ph /\ f e. W ) -> ( 1r ` Z ) = ( 1r ` Z ) ) |
31 |
1 2 3 4 5 6 7 20 28 29 30
|
rpvmasum2 |
|- ( ph -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) e. O(1) ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( * o. X ) =/= X ) -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) e. O(1) ) |
33 |
3
|
phicld |
|- ( ph -> ( phi ` N ) e. NN ) |
34 |
33
|
nnnn0d |
|- ( ph -> ( phi ` N ) e. NN0 ) |
35 |
34
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. NN0 ) |
36 |
35
|
nn0red |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. RR ) |
37 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
38 |
|
inss1 |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) C_ ( 1 ... ( |_ ` x ) ) |
39 |
|
ssfi |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) C_ ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) e. Fin ) |
40 |
37 38 39
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) e. Fin ) |
41 |
|
elinel1 |
|- ( n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) |
42 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
43 |
42
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
44 |
41 43
|
sylan2 |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> n e. NN ) |
45 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
46 |
|
nndivre |
|- ( ( ( Lam ` n ) e. RR /\ n e. NN ) -> ( ( Lam ` n ) / n ) e. RR ) |
47 |
45 46
|
mpancom |
|- ( n e. NN -> ( ( Lam ` n ) / n ) e. RR ) |
48 |
44 47
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
49 |
40 48
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) e. RR ) |
50 |
36 49
|
remulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) e. RR ) |
51 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
52 |
51
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
53 |
|
1re |
|- 1 e. RR |
54 |
4 5
|
dchrfi |
|- ( N e. NN -> D e. Fin ) |
55 |
3 54
|
syl |
|- ( ph -> D e. Fin ) |
56 |
|
difss |
|- ( D \ { .1. } ) C_ D |
57 |
10 56
|
sstri |
|- W C_ D |
58 |
|
ssfi |
|- ( ( D e. Fin /\ W C_ D ) -> W e. Fin ) |
59 |
55 57 58
|
sylancl |
|- ( ph -> W e. Fin ) |
60 |
|
hashcl |
|- ( W e. Fin -> ( # ` W ) e. NN0 ) |
61 |
59 60
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
62 |
61
|
nn0red |
|- ( ph -> ( # ` W ) e. RR ) |
63 |
|
resubcl |
|- ( ( 1 e. RR /\ ( # ` W ) e. RR ) -> ( 1 - ( # ` W ) ) e. RR ) |
64 |
53 62 63
|
sylancr |
|- ( ph -> ( 1 - ( # ` W ) ) e. RR ) |
65 |
64
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( 1 - ( # ` W ) ) e. RR ) |
66 |
52 65
|
remulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) e. RR ) |
67 |
50 66
|
resubcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) e. RR ) |
68 |
67
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) e. CC ) |
69 |
68
|
adantlr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) e. CC ) |
70 |
51
|
adantl |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
71 |
70
|
recnd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
72 |
51
|
ad2antrl |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) |
73 |
66
|
ad2ant2r |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) e. RR ) |
74 |
72 73
|
readdcld |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) e. RR ) |
75 |
|
0red |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 e. RR ) |
76 |
50
|
ad2ant2r |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) e. RR ) |
77 |
|
2re |
|- 2 e. RR |
78 |
77
|
a1i |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 2 e. RR ) |
79 |
62
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( # ` W ) e. RR ) |
80 |
78 79
|
resubcld |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 2 - ( # ` W ) ) e. RR ) |
81 |
|
log1 |
|- ( log ` 1 ) = 0 |
82 |
|
simprr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
83 |
|
1rp |
|- 1 e. RR+ |
84 |
|
simprl |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
85 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
86 |
83 84 85
|
sylancr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
87 |
82 86
|
mpbid |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
88 |
81 87
|
eqbrtrrid |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
89 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> W e. Fin ) |
90 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
91 |
4 5 12 90
|
dchrinv |
|- ( ph -> ( ( invg ` G ) ` X ) = ( * o. X ) ) |
92 |
4
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
93 |
3 92
|
syl |
|- ( ph -> G e. Abel ) |
94 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
95 |
93 94
|
syl |
|- ( ph -> G e. Grp ) |
96 |
5 90
|
grpinvcl |
|- ( ( G e. Grp /\ X e. D ) -> ( ( invg ` G ) ` X ) e. D ) |
97 |
95 12 96
|
syl2anc |
|- ( ph -> ( ( invg ` G ) ` X ) e. D ) |
98 |
91 97
|
eqeltrrd |
|- ( ph -> ( * o. X ) e. D ) |
99 |
|
eldifsni |
|- ( X e. ( D \ { .1. } ) -> X =/= .1. ) |
100 |
11 99
|
syl |
|- ( ph -> X =/= .1. ) |
101 |
5 6
|
grpidcl |
|- ( G e. Grp -> .1. e. D ) |
102 |
95 101
|
syl |
|- ( ph -> .1. e. D ) |
103 |
5 90 95 12 102
|
grpinv11 |
|- ( ph -> ( ( ( invg ` G ) ` X ) = ( ( invg ` G ) ` .1. ) <-> X = .1. ) ) |
104 |
103
|
necon3bid |
|- ( ph -> ( ( ( invg ` G ) ` X ) =/= ( ( invg ` G ) ` .1. ) <-> X =/= .1. ) ) |
105 |
100 104
|
mpbird |
|- ( ph -> ( ( invg ` G ) ` X ) =/= ( ( invg ` G ) ` .1. ) ) |
106 |
6 90
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .1. ) = .1. ) |
107 |
95 106
|
syl |
|- ( ph -> ( ( invg ` G ) ` .1. ) = .1. ) |
108 |
105 91 107
|
3netr3d |
|- ( ph -> ( * o. X ) =/= .1. ) |
109 |
|
eldifsn |
|- ( ( * o. X ) e. ( D \ { .1. } ) <-> ( ( * o. X ) e. D /\ ( * o. X ) =/= .1. ) ) |
110 |
98 108 109
|
sylanbrc |
|- ( ph -> ( * o. X ) e. ( D \ { .1. } ) ) |
111 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
112 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
113 |
|
2fveq3 |
|- ( n = m -> ( X ` ( L ` n ) ) = ( X ` ( L ` m ) ) ) |
114 |
|
id |
|- ( n = m -> n = m ) |
115 |
113 114
|
oveq12d |
|- ( n = m -> ( ( X ` ( L ` n ) ) / n ) = ( ( X ` ( L ` m ) ) / m ) ) |
116 |
115
|
fveq2d |
|- ( n = m -> ( * ` ( ( X ` ( L ` n ) ) / n ) ) = ( * ` ( ( X ` ( L ` m ) ) / m ) ) ) |
117 |
|
eqid |
|- ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) = ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) |
118 |
|
fvex |
|- ( * ` ( ( X ` ( L ` m ) ) / m ) ) e. _V |
119 |
116 117 118
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ` m ) = ( * ` ( ( X ` ( L ` m ) ) / m ) ) ) |
120 |
119
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ` m ) = ( * ` ( ( X ` ( L ` m ) ) / m ) ) ) |
121 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
122 |
121
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. RR ) |
123 |
122
|
cjred |
|- ( ( ph /\ m e. NN ) -> ( * ` m ) = m ) |
124 |
123
|
oveq2d |
|- ( ( ph /\ m e. NN ) -> ( ( * ` ( X ` ( L ` m ) ) ) / ( * ` m ) ) = ( ( * ` ( X ` ( L ` m ) ) ) / m ) ) |
125 |
13
|
adantr |
|- ( ( ph /\ m e. NN ) -> X : ( Base ` Z ) --> CC ) |
126 |
1 9 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
127 |
21 126
|
syl |
|- ( ph -> L : ZZ -onto-> ( Base ` Z ) ) |
128 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
129 |
127 128
|
syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
130 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
131 |
|
ffvelrn |
|- ( ( L : ZZ --> ( Base ` Z ) /\ m e. ZZ ) -> ( L ` m ) e. ( Base ` Z ) ) |
132 |
129 130 131
|
syl2an |
|- ( ( ph /\ m e. NN ) -> ( L ` m ) e. ( Base ` Z ) ) |
133 |
125 132
|
ffvelrnd |
|- ( ( ph /\ m e. NN ) -> ( X ` ( L ` m ) ) e. CC ) |
134 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
135 |
134
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
136 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
137 |
136
|
adantl |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
138 |
133 135 137
|
cjdivd |
|- ( ( ph /\ m e. NN ) -> ( * ` ( ( X ` ( L ` m ) ) / m ) ) = ( ( * ` ( X ` ( L ` m ) ) ) / ( * ` m ) ) ) |
139 |
|
fvco3 |
|- ( ( X : ( Base ` Z ) --> CC /\ ( L ` m ) e. ( Base ` Z ) ) -> ( ( * o. X ) ` ( L ` m ) ) = ( * ` ( X ` ( L ` m ) ) ) ) |
140 |
125 132 139
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> ( ( * o. X ) ` ( L ` m ) ) = ( * ` ( X ` ( L ` m ) ) ) ) |
141 |
140
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( * o. X ) ` ( L ` m ) ) / m ) = ( ( * ` ( X ` ( L ` m ) ) ) / m ) ) |
142 |
124 138 141
|
3eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( * ` ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( * o. X ) ` ( L ` m ) ) / m ) ) |
143 |
120 142
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ` m ) = ( ( ( * o. X ) ` ( L ` m ) ) / m ) ) |
144 |
133
|
cjcld |
|- ( ( ph /\ m e. NN ) -> ( * ` ( X ` ( L ` m ) ) ) e. CC ) |
145 |
144 135 137
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( ( * ` ( X ` ( L ` m ) ) ) / m ) e. CC ) |
146 |
141 145
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( ( * o. X ) ` ( L ` m ) ) / m ) e. CC ) |
147 |
|
eqid |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
148 |
1 2 3 4 5 6 12 100 147
|
dchrmusumlema |
|- ( ph -> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) |
149 |
|
simprrl |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t ) |
150 |
8
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> X e. W ) |
151 |
3
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> N e. NN ) |
152 |
12
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> X e. D ) |
153 |
100
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> X =/= .1. ) |
154 |
|
simprl |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> c e. ( 0 [,) +oo ) ) |
155 |
|
simprrr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) |
156 |
1 2 151 4 5 6 152 153 147 154 149 155 7
|
dchrvmaeq0 |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( X e. W <-> t = 0 ) ) |
157 |
150 156
|
mpbid |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> t = 0 ) |
158 |
149 157
|
breqtrd |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> 0 ) |
159 |
158
|
rexlimdvaa |
|- ( ph -> ( E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> 0 ) ) |
160 |
159
|
exlimdv |
|- ( ph -> ( E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> 0 ) ) |
161 |
148 160
|
mpd |
|- ( ph -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> 0 ) |
162 |
|
seqex |
|- seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) e. _V |
163 |
162
|
a1i |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) e. _V ) |
164 |
|
2fveq3 |
|- ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) |
165 |
|
id |
|- ( a = m -> a = m ) |
166 |
164 165
|
oveq12d |
|- ( a = m -> ( ( X ` ( L ` a ) ) / a ) = ( ( X ` ( L ` m ) ) / m ) ) |
167 |
|
ovex |
|- ( ( X ` ( L ` m ) ) / m ) e. _V |
168 |
166 147 167
|
fvmpt |
|- ( m e. NN -> ( ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
169 |
168
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
170 |
133 135 137
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
171 |
169 170
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ` m ) e. CC ) |
172 |
111 112 171
|
serf |
|- ( ph -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) : NN --> CC ) |
173 |
172
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` k ) e. CC ) |
174 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
175 |
|
simpl |
|- ( ( ph /\ k e. NN ) -> ph ) |
176 |
|
elfznn |
|- ( m e. ( 1 ... k ) -> m e. NN ) |
177 |
175 176 170
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
178 |
174 177
|
fsumcj |
|- ( ( ph /\ k e. NN ) -> ( * ` sum_ m e. ( 1 ... k ) ( ( X ` ( L ` m ) ) / m ) ) = sum_ m e. ( 1 ... k ) ( * ` ( ( X ` ( L ` m ) ) / m ) ) ) |
179 |
175 176 169
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
180 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
181 |
180 111
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
182 |
179 181 177
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( ( X ` ( L ` m ) ) / m ) = ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` k ) ) |
183 |
182
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( * ` sum_ m e. ( 1 ... k ) ( ( X ` ( L ` m ) ) / m ) ) = ( * ` ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` k ) ) ) |
184 |
175 176 120
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ` m ) = ( * ` ( ( X ` ( L ` m ) ) / m ) ) ) |
185 |
170
|
cjcld |
|- ( ( ph /\ m e. NN ) -> ( * ` ( ( X ` ( L ` m ) ) / m ) ) e. CC ) |
186 |
175 176 185
|
syl2an |
|- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( * ` ( ( X ` ( L ` m ) ) / m ) ) e. CC ) |
187 |
184 181 186
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( * ` ( ( X ` ( L ` m ) ) / m ) ) = ( seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) ` k ) ) |
188 |
178 183 187
|
3eqtr3rd |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) ` k ) = ( * ` ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` k ) ) ) |
189 |
111 161 163 112 173 188
|
climcj |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) ~~> ( * ` 0 ) ) |
190 |
|
cj0 |
|- ( * ` 0 ) = 0 |
191 |
189 190
|
breqtrdi |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( * ` ( ( X ` ( L ` n ) ) / n ) ) ) ) ~~> 0 ) |
192 |
111 112 143 146 191
|
isumclim |
|- ( ph -> sum_ m e. NN ( ( ( * o. X ) ` ( L ` m ) ) / m ) = 0 ) |
193 |
|
fveq1 |
|- ( y = ( * o. X ) -> ( y ` ( L ` m ) ) = ( ( * o. X ) ` ( L ` m ) ) ) |
194 |
193
|
oveq1d |
|- ( y = ( * o. X ) -> ( ( y ` ( L ` m ) ) / m ) = ( ( ( * o. X ) ` ( L ` m ) ) / m ) ) |
195 |
194
|
sumeq2sdv |
|- ( y = ( * o. X ) -> sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = sum_ m e. NN ( ( ( * o. X ) ` ( L ` m ) ) / m ) ) |
196 |
195
|
eqeq1d |
|- ( y = ( * o. X ) -> ( sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 <-> sum_ m e. NN ( ( ( * o. X ) ` ( L ` m ) ) / m ) = 0 ) ) |
197 |
196 7
|
elrab2 |
|- ( ( * o. X ) e. W <-> ( ( * o. X ) e. ( D \ { .1. } ) /\ sum_ m e. NN ( ( ( * o. X ) ` ( L ` m ) ) / m ) = 0 ) ) |
198 |
110 192 197
|
sylanbrc |
|- ( ph -> ( * o. X ) e. W ) |
199 |
198
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( * o. X ) e. W ) |
200 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> X e. W ) |
201 |
|
simplr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( * o. X ) =/= X ) |
202 |
89 199 200 201
|
nehash2 |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 2 <_ ( # ` W ) ) |
203 |
|
suble0 |
|- ( ( 2 e. RR /\ ( # ` W ) e. RR ) -> ( ( 2 - ( # ` W ) ) <_ 0 <-> 2 <_ ( # ` W ) ) ) |
204 |
77 79 203
|
sylancr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 2 - ( # ` W ) ) <_ 0 <-> 2 <_ ( # ` W ) ) ) |
205 |
202 204
|
mpbird |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 2 - ( # ` W ) ) <_ 0 ) |
206 |
80 75 72 88 205
|
lemul2ad |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. ( 2 - ( # ` W ) ) ) <_ ( ( log ` x ) x. 0 ) ) |
207 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
208 |
207
|
oveq1i |
|- ( 2 - ( # ` W ) ) = ( ( 1 + 1 ) - ( # ` W ) ) |
209 |
|
1cnd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 e. CC ) |
210 |
79
|
recnd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( # ` W ) e. CC ) |
211 |
209 209 210
|
addsubassd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 1 + 1 ) - ( # ` W ) ) = ( 1 + ( 1 - ( # ` W ) ) ) ) |
212 |
208 211
|
eqtrid |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 2 - ( # ` W ) ) = ( 1 + ( 1 - ( # ` W ) ) ) ) |
213 |
212
|
oveq2d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. ( 2 - ( # ` W ) ) ) = ( ( log ` x ) x. ( 1 + ( 1 - ( # ` W ) ) ) ) ) |
214 |
71
|
adantrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. CC ) |
215 |
64
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 - ( # ` W ) ) e. RR ) |
216 |
215
|
recnd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 - ( # ` W ) ) e. CC ) |
217 |
214 209 216
|
adddid |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. ( 1 + ( 1 - ( # ` W ) ) ) ) = ( ( ( log ` x ) x. 1 ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
218 |
214
|
mulid1d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. 1 ) = ( log ` x ) ) |
219 |
218
|
oveq1d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) x. 1 ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) = ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
220 |
213 217 219
|
3eqtrd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. ( 2 - ( # ` W ) ) ) = ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
221 |
214
|
mul01d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) x. 0 ) = 0 ) |
222 |
206 220 221
|
3brtr3d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) <_ 0 ) |
223 |
33
|
nnred |
|- ( ph -> ( phi ` N ) e. RR ) |
224 |
223
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( phi ` N ) e. RR ) |
225 |
49
|
ad2ant2r |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) e. RR ) |
226 |
34
|
ad2antrr |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( phi ` N ) e. NN0 ) |
227 |
226
|
nn0ge0d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( phi ` N ) ) |
228 |
44 45
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> ( Lam ` n ) e. RR ) |
229 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
230 |
44 229
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> 0 <_ ( Lam ` n ) ) |
231 |
44
|
nnred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> n e. RR ) |
232 |
44
|
nngt0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> 0 < n ) |
233 |
|
divge0 |
|- ( ( ( ( Lam ` n ) e. RR /\ 0 <_ ( Lam ` n ) ) /\ ( n e. RR /\ 0 < n ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
234 |
228 230 231 232 233
|
syl22anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
235 |
40 48 234
|
fsumge0 |
|- ( ( ph /\ x e. RR+ ) -> 0 <_ sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) |
236 |
235
|
ad2ant2r |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) |
237 |
224 225 227 236
|
mulge0d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) ) |
238 |
74 75 76 222 237
|
letrd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) <_ ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) ) |
239 |
|
leaddsub |
|- ( ( ( log ` x ) e. RR /\ ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) e. RR /\ ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) e. RR ) -> ( ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) <_ ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) <-> ( log ` x ) <_ ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) ) |
240 |
72 73 76 239
|
syl3anc |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) + ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) <_ ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) <-> ( log ` x ) <_ ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) ) |
241 |
238 240
|
mpbid |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) <_ ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
242 |
72 88
|
absidd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( log ` x ) ) = ( log ` x ) ) |
243 |
67
|
ad2ant2r |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) e. RR ) |
244 |
75 72 243 88 241
|
letrd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
245 |
243 244
|
absidd |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) = ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
246 |
241 242 245
|
3brtr4d |
|- ( ( ( ph /\ ( * o. X ) =/= X ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( log ` x ) ) <_ ( abs ` ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( `' L " { ( 1r ` Z ) } ) ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) ) |
247 |
19 32 69 71 246
|
o1le |
|- ( ( ph /\ ( * o. X ) =/= X ) -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) |
248 |
247
|
ex |
|- ( ph -> ( ( * o. X ) =/= X -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) ) |
249 |
248
|
necon1bd |
|- ( ph -> ( -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( * o. X ) = X ) ) |
250 |
18 249
|
mpi |
|- ( ph -> ( * o. X ) = X ) |
251 |
250
|
adantr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( * o. X ) = X ) |
252 |
251
|
fveq1d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( * o. X ) ` x ) = ( X ` x ) ) |
253 |
17 252
|
eqtr3d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( * ` ( X ` x ) ) = ( X ` x ) ) |
254 |
15 253
|
cjrebd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( X ` x ) e. RR ) |
255 |
254
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` Z ) ( X ` x ) e. RR ) |
256 |
|
ffnfv |
|- ( X : ( Base ` Z ) --> RR <-> ( X Fn ( Base ` Z ) /\ A. x e. ( Base ` Z ) ( X ` x ) e. RR ) ) |
257 |
14 255 256
|
sylanbrc |
|- ( ph -> X : ( Base ` Z ) --> RR ) |