Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
9 |
|
dchrisum.2 |
|- ( n = x -> A = B ) |
10 |
|
dchrisum.3 |
|- ( ph -> M e. NN ) |
11 |
|
dchrisum.4 |
|- ( ( ph /\ n e. RR+ ) -> A e. RR ) |
12 |
|
dchrisum.5 |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( M <_ n /\ n <_ x ) ) -> B <_ A ) |
13 |
|
dchrisum.6 |
|- ( ph -> ( n e. RR+ |-> A ) ~~>r 0 ) |
14 |
|
dchrisum.7 |
|- F = ( n e. NN |-> ( ( X ` ( L ` n ) ) x. A ) ) |
15 |
|
dchrisum.9 |
|- ( ph -> R e. RR ) |
16 |
|
dchrisum.10 |
|- ( ph -> A. u e. ( 0 ..^ N ) ( abs ` sum_ n e. ( 0 ..^ u ) ( X ` ( L ` n ) ) ) <_ R ) |
17 |
|
fzodisj |
|- ( ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) i^i ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ) = (/) |
18 |
17
|
a1i |
|- ( ( ph /\ U e. NN0 ) -> ( ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) i^i ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ) = (/) ) |
19 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
20 |
19
|
adantr |
|- ( ( ph /\ U e. NN0 ) -> N e. NN0 ) |
21 |
|
nn0re |
|- ( U e. NN0 -> U e. RR ) |
22 |
21
|
adantl |
|- ( ( ph /\ U e. NN0 ) -> U e. RR ) |
23 |
3
|
adantr |
|- ( ( ph /\ U e. NN0 ) -> N e. NN ) |
24 |
22 23
|
nndivred |
|- ( ( ph /\ U e. NN0 ) -> ( U / N ) e. RR ) |
25 |
23
|
nnrpd |
|- ( ( ph /\ U e. NN0 ) -> N e. RR+ ) |
26 |
|
nn0ge0 |
|- ( U e. NN0 -> 0 <_ U ) |
27 |
26
|
adantl |
|- ( ( ph /\ U e. NN0 ) -> 0 <_ U ) |
28 |
22 25 27
|
divge0d |
|- ( ( ph /\ U e. NN0 ) -> 0 <_ ( U / N ) ) |
29 |
|
flge0nn0 |
|- ( ( ( U / N ) e. RR /\ 0 <_ ( U / N ) ) -> ( |_ ` ( U / N ) ) e. NN0 ) |
30 |
24 28 29
|
syl2anc |
|- ( ( ph /\ U e. NN0 ) -> ( |_ ` ( U / N ) ) e. NN0 ) |
31 |
20 30
|
nn0mulcld |
|- ( ( ph /\ U e. NN0 ) -> ( N x. ( |_ ` ( U / N ) ) ) e. NN0 ) |
32 |
|
flle |
|- ( ( U / N ) e. RR -> ( |_ ` ( U / N ) ) <_ ( U / N ) ) |
33 |
24 32
|
syl |
|- ( ( ph /\ U e. NN0 ) -> ( |_ ` ( U / N ) ) <_ ( U / N ) ) |
34 |
|
reflcl |
|- ( ( U / N ) e. RR -> ( |_ ` ( U / N ) ) e. RR ) |
35 |
24 34
|
syl |
|- ( ( ph /\ U e. NN0 ) -> ( |_ ` ( U / N ) ) e. RR ) |
36 |
35 22 25
|
lemuldiv2d |
|- ( ( ph /\ U e. NN0 ) -> ( ( N x. ( |_ ` ( U / N ) ) ) <_ U <-> ( |_ ` ( U / N ) ) <_ ( U / N ) ) ) |
37 |
33 36
|
mpbird |
|- ( ( ph /\ U e. NN0 ) -> ( N x. ( |_ ` ( U / N ) ) ) <_ U ) |
38 |
|
fznn0 |
|- ( U e. NN0 -> ( ( N x. ( |_ ` ( U / N ) ) ) e. ( 0 ... U ) <-> ( ( N x. ( |_ ` ( U / N ) ) ) e. NN0 /\ ( N x. ( |_ ` ( U / N ) ) ) <_ U ) ) ) |
39 |
38
|
adantl |
|- ( ( ph /\ U e. NN0 ) -> ( ( N x. ( |_ ` ( U / N ) ) ) e. ( 0 ... U ) <-> ( ( N x. ( |_ ` ( U / N ) ) ) e. NN0 /\ ( N x. ( |_ ` ( U / N ) ) ) <_ U ) ) ) |
40 |
31 37 39
|
mpbir2and |
|- ( ( ph /\ U e. NN0 ) -> ( N x. ( |_ ` ( U / N ) ) ) e. ( 0 ... U ) ) |
41 |
|
fzosplit |
|- ( ( N x. ( |_ ` ( U / N ) ) ) e. ( 0 ... U ) -> ( 0 ..^ U ) = ( ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) u. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ) ) |
42 |
40 41
|
syl |
|- ( ( ph /\ U e. NN0 ) -> ( 0 ..^ U ) = ( ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) u. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ) ) |
43 |
|
fzofi |
|- ( 0 ..^ U ) e. Fin |
44 |
43
|
a1i |
|- ( ( ph /\ U e. NN0 ) -> ( 0 ..^ U ) e. Fin ) |
45 |
7
|
ad2antrr |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ U ) ) -> X e. D ) |
46 |
|
elfzoelz |
|- ( n e. ( 0 ..^ U ) -> n e. ZZ ) |
47 |
46
|
adantl |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ U ) ) -> n e. ZZ ) |
48 |
4 1 5 2 45 47
|
dchrzrhcl |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ U ) ) -> ( X ` ( L ` n ) ) e. CC ) |
49 |
18 42 44 48
|
fsumsplit |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( 0 ..^ U ) ( X ` ( L ` n ) ) = ( sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) + sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ( X ` ( L ` n ) ) ) ) |
50 |
|
oveq2 |
|- ( k = 0 -> ( N x. k ) = ( N x. 0 ) ) |
51 |
50
|
oveq2d |
|- ( k = 0 -> ( 0 ..^ ( N x. k ) ) = ( 0 ..^ ( N x. 0 ) ) ) |
52 |
51
|
sumeq1d |
|- ( k = 0 -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( N x. 0 ) ) ( X ` ( L ` n ) ) ) |
53 |
52
|
eqeq1d |
|- ( k = 0 -> ( sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 <-> sum_ n e. ( 0 ..^ ( N x. 0 ) ) ( X ` ( L ` n ) ) = 0 ) ) |
54 |
53
|
imbi2d |
|- ( k = 0 -> ( ( ph -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 ) <-> ( ph -> sum_ n e. ( 0 ..^ ( N x. 0 ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
55 |
|
oveq2 |
|- ( k = m -> ( N x. k ) = ( N x. m ) ) |
56 |
55
|
oveq2d |
|- ( k = m -> ( 0 ..^ ( N x. k ) ) = ( 0 ..^ ( N x. m ) ) ) |
57 |
56
|
sumeq1d |
|- ( k = m -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) ) |
58 |
57
|
eqeq1d |
|- ( k = m -> ( sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 <-> sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 ) ) |
59 |
58
|
imbi2d |
|- ( k = m -> ( ( ph -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 ) <-> ( ph -> sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
60 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( N x. k ) = ( N x. ( m + 1 ) ) ) |
61 |
60
|
oveq2d |
|- ( k = ( m + 1 ) -> ( 0 ..^ ( N x. k ) ) = ( 0 ..^ ( N x. ( m + 1 ) ) ) ) |
62 |
61
|
sumeq1d |
|- ( k = ( m + 1 ) -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) |
63 |
62
|
eqeq1d |
|- ( k = ( m + 1 ) -> ( sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 <-> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) ) |
64 |
63
|
imbi2d |
|- ( k = ( m + 1 ) -> ( ( ph -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 ) <-> ( ph -> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
65 |
|
oveq2 |
|- ( k = ( |_ ` ( U / N ) ) -> ( N x. k ) = ( N x. ( |_ ` ( U / N ) ) ) ) |
66 |
65
|
oveq2d |
|- ( k = ( |_ ` ( U / N ) ) -> ( 0 ..^ ( N x. k ) ) = ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ) |
67 |
66
|
sumeq1d |
|- ( k = ( |_ ` ( U / N ) ) -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) ) |
68 |
67
|
eqeq1d |
|- ( k = ( |_ ` ( U / N ) ) -> ( sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 <-> sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) = 0 ) ) |
69 |
68
|
imbi2d |
|- ( k = ( |_ ` ( U / N ) ) -> ( ( ph -> sum_ n e. ( 0 ..^ ( N x. k ) ) ( X ` ( L ` n ) ) = 0 ) <-> ( ph -> sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
70 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
71 |
70
|
mul01d |
|- ( ph -> ( N x. 0 ) = 0 ) |
72 |
71
|
oveq2d |
|- ( ph -> ( 0 ..^ ( N x. 0 ) ) = ( 0 ..^ 0 ) ) |
73 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
74 |
72 73
|
eqtrdi |
|- ( ph -> ( 0 ..^ ( N x. 0 ) ) = (/) ) |
75 |
74
|
sumeq1d |
|- ( ph -> sum_ n e. ( 0 ..^ ( N x. 0 ) ) ( X ` ( L ` n ) ) = sum_ n e. (/) ( X ` ( L ` n ) ) ) |
76 |
|
sum0 |
|- sum_ n e. (/) ( X ` ( L ` n ) ) = 0 |
77 |
75 76
|
eqtrdi |
|- ( ph -> sum_ n e. ( 0 ..^ ( N x. 0 ) ) ( X ` ( L ` n ) ) = 0 ) |
78 |
|
oveq1 |
|- ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 -> ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) = ( 0 + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) ) |
79 |
|
fzodisj |
|- ( ( 0 ..^ ( N x. m ) ) i^i ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ) = (/) |
80 |
79
|
a1i |
|- ( ( ph /\ m e. NN0 ) -> ( ( 0 ..^ ( N x. m ) ) i^i ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ) = (/) ) |
81 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
82 |
81
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> m e. RR ) |
83 |
82
|
lep1d |
|- ( ( ph /\ m e. NN0 ) -> m <_ ( m + 1 ) ) |
84 |
|
peano2re |
|- ( m e. RR -> ( m + 1 ) e. RR ) |
85 |
82 84
|
syl |
|- ( ( ph /\ m e. NN0 ) -> ( m + 1 ) e. RR ) |
86 |
3
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> N e. NN ) |
87 |
86
|
nnred |
|- ( ( ph /\ m e. NN0 ) -> N e. RR ) |
88 |
86
|
nngt0d |
|- ( ( ph /\ m e. NN0 ) -> 0 < N ) |
89 |
|
lemul2 |
|- ( ( m e. RR /\ ( m + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( m <_ ( m + 1 ) <-> ( N x. m ) <_ ( N x. ( m + 1 ) ) ) ) |
90 |
82 85 87 88 89
|
syl112anc |
|- ( ( ph /\ m e. NN0 ) -> ( m <_ ( m + 1 ) <-> ( N x. m ) <_ ( N x. ( m + 1 ) ) ) ) |
91 |
83 90
|
mpbid |
|- ( ( ph /\ m e. NN0 ) -> ( N x. m ) <_ ( N x. ( m + 1 ) ) ) |
92 |
|
nn0mulcl |
|- ( ( N e. NN0 /\ m e. NN0 ) -> ( N x. m ) e. NN0 ) |
93 |
19 92
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( N x. m ) e. NN0 ) |
94 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
95 |
93 94
|
eleqtrdi |
|- ( ( ph /\ m e. NN0 ) -> ( N x. m ) e. ( ZZ>= ` 0 ) ) |
96 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
97 |
|
nnmulcl |
|- ( ( N e. NN /\ ( m + 1 ) e. NN ) -> ( N x. ( m + 1 ) ) e. NN ) |
98 |
3 96 97
|
syl2an |
|- ( ( ph /\ m e. NN0 ) -> ( N x. ( m + 1 ) ) e. NN ) |
99 |
98
|
nnzd |
|- ( ( ph /\ m e. NN0 ) -> ( N x. ( m + 1 ) ) e. ZZ ) |
100 |
|
elfz5 |
|- ( ( ( N x. m ) e. ( ZZ>= ` 0 ) /\ ( N x. ( m + 1 ) ) e. ZZ ) -> ( ( N x. m ) e. ( 0 ... ( N x. ( m + 1 ) ) ) <-> ( N x. m ) <_ ( N x. ( m + 1 ) ) ) ) |
101 |
95 99 100
|
syl2anc |
|- ( ( ph /\ m e. NN0 ) -> ( ( N x. m ) e. ( 0 ... ( N x. ( m + 1 ) ) ) <-> ( N x. m ) <_ ( N x. ( m + 1 ) ) ) ) |
102 |
91 101
|
mpbird |
|- ( ( ph /\ m e. NN0 ) -> ( N x. m ) e. ( 0 ... ( N x. ( m + 1 ) ) ) ) |
103 |
|
fzosplit |
|- ( ( N x. m ) e. ( 0 ... ( N x. ( m + 1 ) ) ) -> ( 0 ..^ ( N x. ( m + 1 ) ) ) = ( ( 0 ..^ ( N x. m ) ) u. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ) ) |
104 |
102 103
|
syl |
|- ( ( ph /\ m e. NN0 ) -> ( 0 ..^ ( N x. ( m + 1 ) ) ) = ( ( 0 ..^ ( N x. m ) ) u. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ) ) |
105 |
|
fzofi |
|- ( 0 ..^ ( N x. ( m + 1 ) ) ) e. Fin |
106 |
105
|
a1i |
|- ( ( ph /\ m e. NN0 ) -> ( 0 ..^ ( N x. ( m + 1 ) ) ) e. Fin ) |
107 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ) -> X e. D ) |
108 |
|
elfzoelz |
|- ( n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) -> n e. ZZ ) |
109 |
108
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ) -> n e. ZZ ) |
110 |
4 1 5 2 107 109
|
dchrzrhcl |
|- ( ( ( ph /\ m e. NN0 ) /\ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
111 |
80 104 106 110
|
fsumsplit |
|- ( ( ph /\ m e. NN0 ) -> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) ) |
112 |
86
|
nncnd |
|- ( ( ph /\ m e. NN0 ) -> N e. CC ) |
113 |
82
|
recnd |
|- ( ( ph /\ m e. NN0 ) -> m e. CC ) |
114 |
|
1cnd |
|- ( ( ph /\ m e. NN0 ) -> 1 e. CC ) |
115 |
112 113 114
|
adddid |
|- ( ( ph /\ m e. NN0 ) -> ( N x. ( m + 1 ) ) = ( ( N x. m ) + ( N x. 1 ) ) ) |
116 |
112
|
mulid1d |
|- ( ( ph /\ m e. NN0 ) -> ( N x. 1 ) = N ) |
117 |
116
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( ( N x. m ) + ( N x. 1 ) ) = ( ( N x. m ) + N ) ) |
118 |
115 117
|
eqtrd |
|- ( ( ph /\ m e. NN0 ) -> ( N x. ( m + 1 ) ) = ( ( N x. m ) + N ) ) |
119 |
118
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) = ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ) |
120 |
119
|
sumeq1d |
|- ( ( ph /\ m e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ( X ` ( L ` n ) ) ) |
121 |
|
oveq2 |
|- ( k = N -> ( ( N x. m ) + k ) = ( ( N x. m ) + N ) ) |
122 |
121
|
oveq2d |
|- ( k = N -> ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) = ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ) |
123 |
122
|
sumeq1d |
|- ( k = N -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ( X ` ( L ` n ) ) ) |
124 |
|
oveq2 |
|- ( k = N -> ( 0 ..^ k ) = ( 0 ..^ N ) ) |
125 |
124
|
sumeq1d |
|- ( k = N -> sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) ) |
126 |
123 125
|
eqeq12d |
|- ( k = N -> ( sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) <-> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) ) ) |
127 |
93
|
nn0zd |
|- ( ( ph /\ m e. NN0 ) -> ( N x. m ) e. ZZ ) |
128 |
127
|
adantr |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( N x. m ) e. ZZ ) |
129 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
130 |
|
zaddcl |
|- ( ( ( N x. m ) e. ZZ /\ k e. ZZ ) -> ( ( N x. m ) + k ) e. ZZ ) |
131 |
127 129 130
|
syl2an |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( N x. m ) + k ) e. ZZ ) |
132 |
|
peano2zm |
|- ( ( ( N x. m ) + k ) e. ZZ -> ( ( ( N x. m ) + k ) - 1 ) e. ZZ ) |
133 |
131 132
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( N x. m ) + k ) - 1 ) e. ZZ ) |
134 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ) -> X e. D ) |
135 |
|
elfzelz |
|- ( n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) -> n e. ZZ ) |
136 |
135
|
adantl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ) -> n e. ZZ ) |
137 |
4 1 5 2 134 136
|
dchrzrhcl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
138 |
|
2fveq3 |
|- ( n = ( i + ( N x. m ) ) -> ( X ` ( L ` n ) ) = ( X ` ( L ` ( i + ( N x. m ) ) ) ) ) |
139 |
128 128 133 137 138
|
fsumshftm |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ( X ` ( L ` n ) ) = sum_ i e. ( ( ( N x. m ) - ( N x. m ) ) ... ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) ) |
140 |
|
fzoval |
|- ( ( ( N x. m ) + k ) e. ZZ -> ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) = ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ) |
141 |
131 140
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) = ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ) |
142 |
141
|
sumeq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. m ) ... ( ( ( N x. m ) + k ) - 1 ) ) ( X ` ( L ` n ) ) ) |
143 |
129
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> k e. ZZ ) |
144 |
|
fzoval |
|- ( k e. ZZ -> ( 0 ..^ k ) = ( 0 ... ( k - 1 ) ) ) |
145 |
143 144
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( 0 ..^ k ) = ( 0 ... ( k - 1 ) ) ) |
146 |
128
|
zcnd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( N x. m ) e. CC ) |
147 |
146
|
subidd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( N x. m ) - ( N x. m ) ) = 0 ) |
148 |
131
|
zcnd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( N x. m ) + k ) e. CC ) |
149 |
|
1cnd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> 1 e. CC ) |
150 |
148 149 146
|
sub32d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) = ( ( ( ( N x. m ) + k ) - ( N x. m ) ) - 1 ) ) |
151 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
152 |
151
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
153 |
146 152
|
pncan2d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( N x. m ) + k ) - ( N x. m ) ) = k ) |
154 |
153
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( ( N x. m ) + k ) - ( N x. m ) ) - 1 ) = ( k - 1 ) ) |
155 |
150 154
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) = ( k - 1 ) ) |
156 |
147 155
|
oveq12d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( ( ( N x. m ) - ( N x. m ) ) ... ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) ) = ( 0 ... ( k - 1 ) ) ) |
157 |
145 156
|
eqtr4d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> ( 0 ..^ k ) = ( ( ( N x. m ) - ( N x. m ) ) ... ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) ) ) |
158 |
157
|
sumeq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ i e. ( 0 ..^ k ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) = sum_ i e. ( ( ( N x. m ) - ( N x. m ) ) ... ( ( ( ( N x. m ) + k ) - 1 ) - ( N x. m ) ) ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) ) |
159 |
139 142 158
|
3eqtr4d |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ i e. ( 0 ..^ k ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) ) |
160 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
161 |
|
nn0z |
|- ( m e. NN0 -> m e. ZZ ) |
162 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ m e. ZZ ) -> N || ( N x. m ) ) |
163 |
160 161 162
|
syl2an |
|- ( ( ph /\ m e. NN0 ) -> N || ( N x. m ) ) |
164 |
163
|
ad2antrr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> N || ( N x. m ) ) |
165 |
|
elfzoelz |
|- ( i e. ( 0 ..^ k ) -> i e. ZZ ) |
166 |
165
|
adantl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> i e. ZZ ) |
167 |
166
|
zcnd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> i e. CC ) |
168 |
146
|
adantr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( N x. m ) e. CC ) |
169 |
167 168
|
pncan2d |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( ( i + ( N x. m ) ) - i ) = ( N x. m ) ) |
170 |
164 169
|
breqtrrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> N || ( ( i + ( N x. m ) ) - i ) ) |
171 |
86
|
nnnn0d |
|- ( ( ph /\ m e. NN0 ) -> N e. NN0 ) |
172 |
171
|
ad2antrr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> N e. NN0 ) |
173 |
|
zaddcl |
|- ( ( i e. ZZ /\ ( N x. m ) e. ZZ ) -> ( i + ( N x. m ) ) e. ZZ ) |
174 |
165 128 173
|
syl2anr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( i + ( N x. m ) ) e. ZZ ) |
175 |
1 2
|
zndvds |
|- ( ( N e. NN0 /\ ( i + ( N x. m ) ) e. ZZ /\ i e. ZZ ) -> ( ( L ` ( i + ( N x. m ) ) ) = ( L ` i ) <-> N || ( ( i + ( N x. m ) ) - i ) ) ) |
176 |
172 174 166 175
|
syl3anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( ( L ` ( i + ( N x. m ) ) ) = ( L ` i ) <-> N || ( ( i + ( N x. m ) ) - i ) ) ) |
177 |
170 176
|
mpbird |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( L ` ( i + ( N x. m ) ) ) = ( L ` i ) ) |
178 |
177
|
fveq2d |
|- ( ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) /\ i e. ( 0 ..^ k ) ) -> ( X ` ( L ` ( i + ( N x. m ) ) ) ) = ( X ` ( L ` i ) ) ) |
179 |
178
|
sumeq2dv |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ i e. ( 0 ..^ k ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) = sum_ i e. ( 0 ..^ k ) ( X ` ( L ` i ) ) ) |
180 |
|
2fveq3 |
|- ( i = n -> ( X ` ( L ` i ) ) = ( X ` ( L ` n ) ) ) |
181 |
180
|
cbvsumv |
|- sum_ i e. ( 0 ..^ k ) ( X ` ( L ` i ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) |
182 |
179 181
|
eqtrdi |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ i e. ( 0 ..^ k ) ( X ` ( L ` ( i + ( N x. m ) ) ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) |
183 |
159 182
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) |
184 |
183
|
ralrimiva |
|- ( ( ph /\ m e. NN0 ) -> A. k e. NN0 sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) |
185 |
126 184 171
|
rspcdva |
|- ( ( ph /\ m e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + N ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) ) |
186 |
|
fveq2 |
|- ( k = ( L ` n ) -> ( X ` k ) = ( X ` ( L ` n ) ) ) |
187 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
188 |
|
ifnefalse |
|- ( N =/= 0 -> if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) ) |
189 |
187 188
|
syl |
|- ( ph -> if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) ) |
190 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
191 |
189 190
|
eqeltrdi |
|- ( ph -> if ( N = 0 , ZZ , ( 0 ..^ N ) ) e. Fin ) |
192 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
193 |
2
|
reseq1i |
|- ( L |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` Z ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) |
194 |
|
eqid |
|- if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
195 |
1 192 193 194
|
znf1o |
|- ( N e. NN0 -> ( L |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> ( Base ` Z ) ) |
196 |
19 195
|
syl |
|- ( ph -> ( L |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> ( Base ` Z ) ) |
197 |
|
fvres |
|- ( n e. if ( N = 0 , ZZ , ( 0 ..^ N ) ) -> ( ( L |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ` n ) = ( L ` n ) ) |
198 |
197
|
adantl |
|- ( ( ph /\ n e. if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) -> ( ( L |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ` n ) = ( L ` n ) ) |
199 |
4 1 5 192 7
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
200 |
199
|
ffvelrnda |
|- ( ( ph /\ k e. ( Base ` Z ) ) -> ( X ` k ) e. CC ) |
201 |
186 191 196 198 200
|
fsumf1o |
|- ( ph -> sum_ k e. ( Base ` Z ) ( X ` k ) = sum_ n e. if ( N = 0 , ZZ , ( 0 ..^ N ) ) ( X ` ( L ` n ) ) ) |
202 |
4 1 5 6 7 192
|
dchrsum |
|- ( ph -> sum_ k e. ( Base ` Z ) ( X ` k ) = if ( X = .1. , ( phi ` N ) , 0 ) ) |
203 |
|
ifnefalse |
|- ( X =/= .1. -> if ( X = .1. , ( phi ` N ) , 0 ) = 0 ) |
204 |
8 203
|
syl |
|- ( ph -> if ( X = .1. , ( phi ` N ) , 0 ) = 0 ) |
205 |
202 204
|
eqtrd |
|- ( ph -> sum_ k e. ( Base ` Z ) ( X ` k ) = 0 ) |
206 |
189
|
sumeq1d |
|- ( ph -> sum_ n e. if ( N = 0 , ZZ , ( 0 ..^ N ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) ) |
207 |
201 205 206
|
3eqtr3rd |
|- ( ph -> sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) = 0 ) |
208 |
207
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> sum_ n e. ( 0 ..^ N ) ( X ` ( L ` n ) ) = 0 ) |
209 |
120 185 208
|
3eqtrd |
|- ( ( ph /\ m e. NN0 ) -> sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) |
210 |
209
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( 0 + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) = ( 0 + 0 ) ) |
211 |
|
00id |
|- ( 0 + 0 ) = 0 |
212 |
210 211
|
eqtr2di |
|- ( ( ph /\ m e. NN0 ) -> 0 = ( 0 + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) ) |
213 |
111 212
|
eqeq12d |
|- ( ( ph /\ m e. NN0 ) -> ( sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 <-> ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) = ( 0 + sum_ n e. ( ( N x. m ) ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) ) ) ) |
214 |
78 213
|
syl5ibr |
|- ( ( ph /\ m e. NN0 ) -> ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 -> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) ) |
215 |
214
|
expcom |
|- ( m e. NN0 -> ( ph -> ( sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 -> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
216 |
215
|
a2d |
|- ( m e. NN0 -> ( ( ph -> sum_ n e. ( 0 ..^ ( N x. m ) ) ( X ` ( L ` n ) ) = 0 ) -> ( ph -> sum_ n e. ( 0 ..^ ( N x. ( m + 1 ) ) ) ( X ` ( L ` n ) ) = 0 ) ) ) |
217 |
54 59 64 69 77 216
|
nn0ind |
|- ( ( |_ ` ( U / N ) ) e. NN0 -> ( ph -> sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) = 0 ) ) |
218 |
217
|
impcom |
|- ( ( ph /\ ( |_ ` ( U / N ) ) e. NN0 ) -> sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) = 0 ) |
219 |
30 218
|
syldan |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) = 0 ) |
220 |
|
modval |
|- ( ( U e. RR /\ N e. RR+ ) -> ( U mod N ) = ( U - ( N x. ( |_ ` ( U / N ) ) ) ) ) |
221 |
22 25 220
|
syl2anc |
|- ( ( ph /\ U e. NN0 ) -> ( U mod N ) = ( U - ( N x. ( |_ ` ( U / N ) ) ) ) ) |
222 |
221
|
oveq2d |
|- ( ( ph /\ U e. NN0 ) -> ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) = ( ( N x. ( |_ ` ( U / N ) ) ) + ( U - ( N x. ( |_ ` ( U / N ) ) ) ) ) ) |
223 |
31
|
nn0cnd |
|- ( ( ph /\ U e. NN0 ) -> ( N x. ( |_ ` ( U / N ) ) ) e. CC ) |
224 |
|
nn0cn |
|- ( U e. NN0 -> U e. CC ) |
225 |
224
|
adantl |
|- ( ( ph /\ U e. NN0 ) -> U e. CC ) |
226 |
223 225
|
pncan3d |
|- ( ( ph /\ U e. NN0 ) -> ( ( N x. ( |_ ` ( U / N ) ) ) + ( U - ( N x. ( |_ ` ( U / N ) ) ) ) ) = U ) |
227 |
222 226
|
eqtr2d |
|- ( ( ph /\ U e. NN0 ) -> U = ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) |
228 |
227
|
oveq2d |
|- ( ( ph /\ U e. NN0 ) -> ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) = ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ) |
229 |
228
|
sumeq1d |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ( X ` ( L ` n ) ) ) |
230 |
|
nn0z |
|- ( U e. NN0 -> U e. ZZ ) |
231 |
|
zmodcl |
|- ( ( U e. ZZ /\ N e. NN ) -> ( U mod N ) e. NN0 ) |
232 |
230 3 231
|
syl2anr |
|- ( ( ph /\ U e. NN0 ) -> ( U mod N ) e. NN0 ) |
233 |
184
|
ralrimiva |
|- ( ph -> A. m e. NN0 A. k e. NN0 sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) |
234 |
233
|
adantr |
|- ( ( ph /\ U e. NN0 ) -> A. m e. NN0 A. k e. NN0 sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) |
235 |
|
oveq2 |
|- ( m = ( |_ ` ( U / N ) ) -> ( N x. m ) = ( N x. ( |_ ` ( U / N ) ) ) ) |
236 |
235
|
oveq1d |
|- ( m = ( |_ ` ( U / N ) ) -> ( ( N x. m ) + k ) = ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) |
237 |
235 236
|
oveq12d |
|- ( m = ( |_ ` ( U / N ) ) -> ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) = ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) ) |
238 |
237
|
sumeq1d |
|- ( m = ( |_ ` ( U / N ) ) -> sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) ( X ` ( L ` n ) ) ) |
239 |
238
|
eqeq1d |
|- ( m = ( |_ ` ( U / N ) ) -> ( sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) <-> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) ) |
240 |
|
oveq2 |
|- ( k = ( U mod N ) -> ( ( N x. ( |_ ` ( U / N ) ) ) + k ) = ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) |
241 |
240
|
oveq2d |
|- ( k = ( U mod N ) -> ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) = ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ) |
242 |
241
|
sumeq1d |
|- ( k = ( U mod N ) -> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ( X ` ( L ` n ) ) ) |
243 |
|
oveq2 |
|- ( k = ( U mod N ) -> ( 0 ..^ k ) = ( 0 ..^ ( U mod N ) ) ) |
244 |
243
|
sumeq1d |
|- ( k = ( U mod N ) -> sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
245 |
242 244
|
eqeq12d |
|- ( k = ( U mod N ) -> ( sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) <-> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) ) |
246 |
239 245
|
rspc2va |
|- ( ( ( ( |_ ` ( U / N ) ) e. NN0 /\ ( U mod N ) e. NN0 ) /\ A. m e. NN0 A. k e. NN0 sum_ n e. ( ( N x. m ) ..^ ( ( N x. m ) + k ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ k ) ( X ` ( L ` n ) ) ) -> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
247 |
30 232 234 246
|
syl21anc |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ ( ( N x. ( |_ ` ( U / N ) ) ) + ( U mod N ) ) ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
248 |
229 247
|
eqtrd |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
249 |
219 248
|
oveq12d |
|- ( ( ph /\ U e. NN0 ) -> ( sum_ n e. ( 0 ..^ ( N x. ( |_ ` ( U / N ) ) ) ) ( X ` ( L ` n ) ) + sum_ n e. ( ( N x. ( |_ ` ( U / N ) ) ) ..^ U ) ( X ` ( L ` n ) ) ) = ( 0 + sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) ) |
250 |
|
fzofi |
|- ( 0 ..^ ( U mod N ) ) e. Fin |
251 |
250
|
a1i |
|- ( ( ph /\ U e. NN0 ) -> ( 0 ..^ ( U mod N ) ) e. Fin ) |
252 |
7
|
ad2antrr |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ ( U mod N ) ) ) -> X e. D ) |
253 |
|
elfzoelz |
|- ( n e. ( 0 ..^ ( U mod N ) ) -> n e. ZZ ) |
254 |
253
|
adantl |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ ( U mod N ) ) ) -> n e. ZZ ) |
255 |
4 1 5 2 252 254
|
dchrzrhcl |
|- ( ( ( ph /\ U e. NN0 ) /\ n e. ( 0 ..^ ( U mod N ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
256 |
251 255
|
fsumcl |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) e. CC ) |
257 |
256
|
addid2d |
|- ( ( ph /\ U e. NN0 ) -> ( 0 + sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
258 |
49 249 257
|
3eqtrd |
|- ( ( ph /\ U e. NN0 ) -> sum_ n e. ( 0 ..^ U ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
259 |
258
|
fveq2d |
|- ( ( ph /\ U e. NN0 ) -> ( abs ` sum_ n e. ( 0 ..^ U ) ( X ` ( L ` n ) ) ) = ( abs ` sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) ) |
260 |
|
oveq2 |
|- ( u = ( U mod N ) -> ( 0 ..^ u ) = ( 0 ..^ ( U mod N ) ) ) |
261 |
260
|
sumeq1d |
|- ( u = ( U mod N ) -> sum_ n e. ( 0 ..^ u ) ( X ` ( L ` n ) ) = sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) |
262 |
261
|
fveq2d |
|- ( u = ( U mod N ) -> ( abs ` sum_ n e. ( 0 ..^ u ) ( X ` ( L ` n ) ) ) = ( abs ` sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) ) |
263 |
262
|
breq1d |
|- ( u = ( U mod N ) -> ( ( abs ` sum_ n e. ( 0 ..^ u ) ( X ` ( L ` n ) ) ) <_ R <-> ( abs ` sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) <_ R ) ) |
264 |
16
|
adantr |
|- ( ( ph /\ U e. NN0 ) -> A. u e. ( 0 ..^ N ) ( abs ` sum_ n e. ( 0 ..^ u ) ( X ` ( L ` n ) ) ) <_ R ) |
265 |
|
zmodfzo |
|- ( ( U e. ZZ /\ N e. NN ) -> ( U mod N ) e. ( 0 ..^ N ) ) |
266 |
230 3 265
|
syl2anr |
|- ( ( ph /\ U e. NN0 ) -> ( U mod N ) e. ( 0 ..^ N ) ) |
267 |
263 264 266
|
rspcdva |
|- ( ( ph /\ U e. NN0 ) -> ( abs ` sum_ n e. ( 0 ..^ ( U mod N ) ) ( X ` ( L ` n ) ) ) <_ R ) |
268 |
259 267
|
eqbrtrd |
|- ( ( ph /\ U e. NN0 ) -> ( abs ` sum_ n e. ( 0 ..^ U ) ( X ` ( L ` n ) ) ) <_ R ) |