| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
| 8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
| 9 |
|
dchrisum.2 |
|- ( n = x -> A = B ) |
| 10 |
|
dchrisum.3 |
|- ( ph -> M e. NN ) |
| 11 |
|
dchrisum.4 |
|- ( ( ph /\ n e. RR+ ) -> A e. RR ) |
| 12 |
|
dchrisum.5 |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) /\ ( M <_ n /\ n <_ x ) ) -> B <_ A ) |
| 13 |
|
dchrisum.6 |
|- ( ph -> ( n e. RR+ |-> A ) ~~>r 0 ) |
| 14 |
|
dchrisum.7 |
|- F = ( n e. NN |-> ( ( X ` ( L ` n ) ) x. A ) ) |
| 15 |
11
|
ralrimiva |
|- ( ph -> A. n e. RR+ A e. RR ) |
| 16 |
|
nfcsb1v |
|- F/_ n [_ I / n ]_ A |
| 17 |
16
|
nfel1 |
|- F/ n [_ I / n ]_ A e. RR |
| 18 |
|
csbeq1a |
|- ( n = I -> A = [_ I / n ]_ A ) |
| 19 |
18
|
eleq1d |
|- ( n = I -> ( A e. RR <-> [_ I / n ]_ A e. RR ) ) |
| 20 |
17 19
|
rspc |
|- ( I e. RR+ -> ( A. n e. RR+ A e. RR -> [_ I / n ]_ A e. RR ) ) |
| 21 |
15 20
|
syl5com |
|- ( ph -> ( I e. RR+ -> [_ I / n ]_ A e. RR ) ) |
| 22 |
|
eqid |
|- ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) |
| 23 |
10
|
nnred |
|- ( ph -> M e. RR ) |
| 24 |
|
elicopnf |
|- ( M e. RR -> ( I e. ( M [,) +oo ) <-> ( I e. RR /\ M <_ I ) ) ) |
| 25 |
23 24
|
syl |
|- ( ph -> ( I e. ( M [,) +oo ) <-> ( I e. RR /\ M <_ I ) ) ) |
| 26 |
25
|
simprbda |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> I e. RR ) |
| 27 |
26
|
flcld |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( |_ ` I ) e. ZZ ) |
| 28 |
27
|
peano2zd |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( ( |_ ` I ) + 1 ) e. ZZ ) |
| 29 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 30 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 31 |
|
nnrp |
|- ( i e. NN -> i e. RR+ ) |
| 32 |
31
|
ssriv |
|- NN C_ RR+ |
| 33 |
|
eqid |
|- ( n e. RR+ |-> A ) = ( n e. RR+ |-> A ) |
| 34 |
33 11
|
dmmptd |
|- ( ph -> dom ( n e. RR+ |-> A ) = RR+ ) |
| 35 |
32 34
|
sseqtrrid |
|- ( ph -> NN C_ dom ( n e. RR+ |-> A ) ) |
| 36 |
29 30 13 35
|
rlimclim1 |
|- ( ph -> ( n e. RR+ |-> A ) ~~> 0 ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( n e. RR+ |-> A ) ~~> 0 ) |
| 38 |
|
0red |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> 0 e. RR ) |
| 39 |
23
|
adantr |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> M e. RR ) |
| 40 |
10
|
nngt0d |
|- ( ph -> 0 < M ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> 0 < M ) |
| 42 |
25
|
simplbda |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> M <_ I ) |
| 43 |
38 39 26 41 42
|
ltletrd |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> 0 < I ) |
| 44 |
26 43
|
elrpd |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> I e. RR+ ) |
| 45 |
15
|
adantr |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> A. n e. RR+ A e. RR ) |
| 46 |
44 45 20
|
sylc |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> [_ I / n ]_ A e. RR ) |
| 47 |
46
|
recnd |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> [_ I / n ]_ A e. CC ) |
| 48 |
|
ssid |
|- ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) C_ ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) |
| 49 |
|
fvex |
|- ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) e. _V |
| 50 |
48 49
|
climconst2 |
|- ( ( [_ I / n ]_ A e. CC /\ ( ( |_ ` I ) + 1 ) e. ZZ ) -> ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ~~> [_ I / n ]_ A ) |
| 51 |
47 28 50
|
syl2anc |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ~~> [_ I / n ]_ A ) |
| 52 |
44
|
rpge0d |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> 0 <_ I ) |
| 53 |
|
flge0nn0 |
|- ( ( I e. RR /\ 0 <_ I ) -> ( |_ ` I ) e. NN0 ) |
| 54 |
26 52 53
|
syl2anc |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( |_ ` I ) e. NN0 ) |
| 55 |
|
nn0p1nn |
|- ( ( |_ ` I ) e. NN0 -> ( ( |_ ` I ) + 1 ) e. NN ) |
| 56 |
54 55
|
syl |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> ( ( |_ ` I ) + 1 ) e. NN ) |
| 57 |
|
eluznn |
|- ( ( ( ( |_ ` I ) + 1 ) e. NN /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> i e. NN ) |
| 58 |
56 57
|
sylan |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> i e. NN ) |
| 59 |
58
|
nnrpd |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> i e. RR+ ) |
| 60 |
15
|
ad2antrr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> A. n e. RR+ A e. RR ) |
| 61 |
|
nfcsb1v |
|- F/_ n [_ i / n ]_ A |
| 62 |
61
|
nfel1 |
|- F/ n [_ i / n ]_ A e. RR |
| 63 |
|
csbeq1a |
|- ( n = i -> A = [_ i / n ]_ A ) |
| 64 |
63
|
eleq1d |
|- ( n = i -> ( A e. RR <-> [_ i / n ]_ A e. RR ) ) |
| 65 |
62 64
|
rspc |
|- ( i e. RR+ -> ( A. n e. RR+ A e. RR -> [_ i / n ]_ A e. RR ) ) |
| 66 |
59 60 65
|
sylc |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> [_ i / n ]_ A e. RR ) |
| 67 |
33
|
fvmpts |
|- ( ( i e. RR+ /\ [_ i / n ]_ A e. RR ) -> ( ( n e. RR+ |-> A ) ` i ) = [_ i / n ]_ A ) |
| 68 |
59 66 67
|
syl2anc |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( n e. RR+ |-> A ) ` i ) = [_ i / n ]_ A ) |
| 69 |
68 66
|
eqeltrd |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( n e. RR+ |-> A ) ` i ) e. RR ) |
| 70 |
|
fvconst2g |
|- ( ( [_ I / n ]_ A e. RR /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ` i ) = [_ I / n ]_ A ) |
| 71 |
46 70
|
sylan |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ` i ) = [_ I / n ]_ A ) |
| 72 |
46
|
adantr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> [_ I / n ]_ A e. RR ) |
| 73 |
71 72
|
eqeltrd |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ` i ) e. RR ) |
| 74 |
44
|
adantr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> I e. RR+ ) |
| 75 |
12
|
3expia |
|- ( ( ph /\ ( n e. RR+ /\ x e. RR+ ) ) -> ( ( M <_ n /\ n <_ x ) -> B <_ A ) ) |
| 76 |
75
|
ralrimivva |
|- ( ph -> A. n e. RR+ A. x e. RR+ ( ( M <_ n /\ n <_ x ) -> B <_ A ) ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> A. n e. RR+ A. x e. RR+ ( ( M <_ n /\ n <_ x ) -> B <_ A ) ) |
| 78 |
|
nfcv |
|- F/_ n RR+ |
| 79 |
|
nfv |
|- F/ n ( M <_ I /\ I <_ x ) |
| 80 |
|
nfcv |
|- F/_ n B |
| 81 |
|
nfcv |
|- F/_ n <_ |
| 82 |
80 81 16
|
nfbr |
|- F/ n B <_ [_ I / n ]_ A |
| 83 |
79 82
|
nfim |
|- F/ n ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) |
| 84 |
78 83
|
nfralw |
|- F/ n A. x e. RR+ ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) |
| 85 |
|
breq2 |
|- ( n = I -> ( M <_ n <-> M <_ I ) ) |
| 86 |
|
breq1 |
|- ( n = I -> ( n <_ x <-> I <_ x ) ) |
| 87 |
85 86
|
anbi12d |
|- ( n = I -> ( ( M <_ n /\ n <_ x ) <-> ( M <_ I /\ I <_ x ) ) ) |
| 88 |
18
|
breq2d |
|- ( n = I -> ( B <_ A <-> B <_ [_ I / n ]_ A ) ) |
| 89 |
87 88
|
imbi12d |
|- ( n = I -> ( ( ( M <_ n /\ n <_ x ) -> B <_ A ) <-> ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) ) ) |
| 90 |
89
|
ralbidv |
|- ( n = I -> ( A. x e. RR+ ( ( M <_ n /\ n <_ x ) -> B <_ A ) <-> A. x e. RR+ ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) ) ) |
| 91 |
84 90
|
rspc |
|- ( I e. RR+ -> ( A. n e. RR+ A. x e. RR+ ( ( M <_ n /\ n <_ x ) -> B <_ A ) -> A. x e. RR+ ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) ) ) |
| 92 |
74 77 91
|
sylc |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> A. x e. RR+ ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) ) |
| 93 |
42
|
adantr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> M <_ I ) |
| 94 |
26
|
adantr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> I e. RR ) |
| 95 |
|
reflcl |
|- ( I e. RR -> ( |_ ` I ) e. RR ) |
| 96 |
|
peano2re |
|- ( ( |_ ` I ) e. RR -> ( ( |_ ` I ) + 1 ) e. RR ) |
| 97 |
94 95 96
|
3syl |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( |_ ` I ) + 1 ) e. RR ) |
| 98 |
58
|
nnred |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> i e. RR ) |
| 99 |
|
fllep1 |
|- ( I e. RR -> I <_ ( ( |_ ` I ) + 1 ) ) |
| 100 |
26 99
|
syl |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> I <_ ( ( |_ ` I ) + 1 ) ) |
| 101 |
100
|
adantr |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> I <_ ( ( |_ ` I ) + 1 ) ) |
| 102 |
|
eluzle |
|- ( i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) -> ( ( |_ ` I ) + 1 ) <_ i ) |
| 103 |
102
|
adantl |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( |_ ` I ) + 1 ) <_ i ) |
| 104 |
94 97 98 101 103
|
letrd |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> I <_ i ) |
| 105 |
93 104
|
jca |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( M <_ I /\ I <_ i ) ) |
| 106 |
|
breq2 |
|- ( x = i -> ( I <_ x <-> I <_ i ) ) |
| 107 |
106
|
anbi2d |
|- ( x = i -> ( ( M <_ I /\ I <_ x ) <-> ( M <_ I /\ I <_ i ) ) ) |
| 108 |
|
eqvisset |
|- ( x = i -> i e. _V ) |
| 109 |
|
equtr2 |
|- ( ( x = i /\ n = i ) -> x = n ) |
| 110 |
9
|
equcoms |
|- ( x = n -> A = B ) |
| 111 |
109 110
|
syl |
|- ( ( x = i /\ n = i ) -> A = B ) |
| 112 |
108 111
|
csbied |
|- ( x = i -> [_ i / n ]_ A = B ) |
| 113 |
112
|
eqcomd |
|- ( x = i -> B = [_ i / n ]_ A ) |
| 114 |
113
|
breq1d |
|- ( x = i -> ( B <_ [_ I / n ]_ A <-> [_ i / n ]_ A <_ [_ I / n ]_ A ) ) |
| 115 |
107 114
|
imbi12d |
|- ( x = i -> ( ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) <-> ( ( M <_ I /\ I <_ i ) -> [_ i / n ]_ A <_ [_ I / n ]_ A ) ) ) |
| 116 |
115
|
rspcv |
|- ( i e. RR+ -> ( A. x e. RR+ ( ( M <_ I /\ I <_ x ) -> B <_ [_ I / n ]_ A ) -> ( ( M <_ I /\ I <_ i ) -> [_ i / n ]_ A <_ [_ I / n ]_ A ) ) ) |
| 117 |
59 92 105 116
|
syl3c |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> [_ i / n ]_ A <_ [_ I / n ]_ A ) |
| 118 |
117 68 71
|
3brtr4d |
|- ( ( ( ph /\ I e. ( M [,) +oo ) ) /\ i e. ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) ) -> ( ( n e. RR+ |-> A ) ` i ) <_ ( ( ( ZZ>= ` ( ( |_ ` I ) + 1 ) ) X. { [_ I / n ]_ A } ) ` i ) ) |
| 119 |
22 28 37 51 69 73 118
|
climle |
|- ( ( ph /\ I e. ( M [,) +oo ) ) -> 0 <_ [_ I / n ]_ A ) |
| 120 |
119
|
ex |
|- ( ph -> ( I e. ( M [,) +oo ) -> 0 <_ [_ I / n ]_ A ) ) |
| 121 |
21 120
|
jca |
|- ( ph -> ( ( I e. RR+ -> [_ I / n ]_ A e. RR ) /\ ( I e. ( M [,) +oo ) -> 0 <_ [_ I / n ]_ A ) ) ) |