Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpvmasum.z | |- Z = ( Z/nZ ` N ) |
|
| rpvmasum.l | |- L = ( ZRHom ` Z ) |
||
| rpvmasum.a | |- ( ph -> N e. NN ) |
||
| dchrmusum.g | |- G = ( DChr ` N ) |
||
| dchrmusum.d | |- D = ( Base ` G ) |
||
| dchrmusum.1 | |- .1. = ( 0g ` G ) |
||
| dchrmusum.b | |- ( ph -> X e. D ) |
||
| dchrmusum.n1 | |- ( ph -> X =/= .1. ) |
||
| dchrmusum.f | |- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
||
| dchrmusum.c | |- ( ph -> C e. ( 0 [,) +oo ) ) |
||
| dchrmusum.t | |- ( ph -> seq 1 ( + , F ) ~~> T ) |
||
| dchrmusum.2 | |- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - T ) ) <_ ( C / y ) ) |
||
| Assertion | dchrisumn0 | |- ( ph -> T =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpvmasum.z | |- Z = ( Z/nZ ` N ) |
|
| 2 | rpvmasum.l | |- L = ( ZRHom ` Z ) |
|
| 3 | rpvmasum.a | |- ( ph -> N e. NN ) |
|
| 4 | dchrmusum.g | |- G = ( DChr ` N ) |
|
| 5 | dchrmusum.d | |- D = ( Base ` G ) |
|
| 6 | dchrmusum.1 | |- .1. = ( 0g ` G ) |
|
| 7 | dchrmusum.b | |- ( ph -> X e. D ) |
|
| 8 | dchrmusum.n1 | |- ( ph -> X =/= .1. ) |
|
| 9 | dchrmusum.f | |- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
|
| 10 | dchrmusum.c | |- ( ph -> C e. ( 0 [,) +oo ) ) |
|
| 11 | dchrmusum.t | |- ( ph -> seq 1 ( + , F ) ~~> T ) |
|
| 12 | dchrmusum.2 | |- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - T ) ) <_ ( C / y ) ) |
|
| 13 | 3 | adantr | |- ( ( ph /\ T = 0 ) -> N e. NN ) |
| 14 | eqid | |- { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
|
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 14 | dchrvmaeq0 | |- ( ph -> ( X e. { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } <-> T = 0 ) ) |
| 16 | 15 | biimpar | |- ( ( ph /\ T = 0 ) -> X e. { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } ) |
| 17 | 1 2 13 4 5 6 14 16 | dchrisum0 | |- -. ( ph /\ T = 0 ) |
| 18 | 17 | imnani | |- ( ph -> -. T = 0 ) |
| 19 | 18 | neqned | |- ( ph -> T =/= 0 ) |