Metamath Proof Explorer


Theorem dchrisumn0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z
|- Z = ( Z/nZ ` N )
rpvmasum.l
|- L = ( ZRHom ` Z )
rpvmasum.a
|- ( ph -> N e. NN )
dchrmusum.g
|- G = ( DChr ` N )
dchrmusum.d
|- D = ( Base ` G )
dchrmusum.1
|- .1. = ( 0g ` G )
dchrmusum.b
|- ( ph -> X e. D )
dchrmusum.n1
|- ( ph -> X =/= .1. )
dchrmusum.f
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) )
dchrmusum.c
|- ( ph -> C e. ( 0 [,) +oo ) )
dchrmusum.t
|- ( ph -> seq 1 ( + , F ) ~~> T )
dchrmusum.2
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - T ) ) <_ ( C / y ) )
Assertion dchrisumn0
|- ( ph -> T =/= 0 )

Proof

Step Hyp Ref Expression
1 rpvmasum.z
 |-  Z = ( Z/nZ ` N )
2 rpvmasum.l
 |-  L = ( ZRHom ` Z )
3 rpvmasum.a
 |-  ( ph -> N e. NN )
4 dchrmusum.g
 |-  G = ( DChr ` N )
5 dchrmusum.d
 |-  D = ( Base ` G )
6 dchrmusum.1
 |-  .1. = ( 0g ` G )
7 dchrmusum.b
 |-  ( ph -> X e. D )
8 dchrmusum.n1
 |-  ( ph -> X =/= .1. )
9 dchrmusum.f
 |-  F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) )
10 dchrmusum.c
 |-  ( ph -> C e. ( 0 [,) +oo ) )
11 dchrmusum.t
 |-  ( ph -> seq 1 ( + , F ) ~~> T )
12 dchrmusum.2
 |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - T ) ) <_ ( C / y ) )
13 3 adantr
 |-  ( ( ph /\ T = 0 ) -> N e. NN )
14 eqid
 |-  { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 }
15 1 2 3 4 5 6 7 8 9 10 11 12 14 dchrvmaeq0
 |-  ( ph -> ( X e. { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } <-> T = 0 ) )
16 15 biimpar
 |-  ( ( ph /\ T = 0 ) -> X e. { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } )
17 1 2 13 4 5 6 14 16 dchrisum0
 |-  -. ( ph /\ T = 0 )
18 17 imnani
 |-  ( ph -> -. T = 0 )
19 18 neqned
 |-  ( ph -> T =/= 0 )