| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrmul.t |
|- .x. = ( +g ` G ) |
| 5 |
|
dchrmul.x |
|- ( ph -> X e. D ) |
| 6 |
|
dchrmul.y |
|- ( ph -> Y e. D ) |
| 7 |
1 2 3 4 5 6
|
dchrmul |
|- ( ph -> ( X .x. Y ) = ( X oF x. Y ) ) |
| 8 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
| 10 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 11 |
1 2 3 10 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
| 12 |
1 2 3 10 6
|
dchrf |
|- ( ph -> Y : ( Base ` Z ) --> CC ) |
| 13 |
|
fvexd |
|- ( ph -> ( Base ` Z ) e. _V ) |
| 14 |
|
inidm |
|- ( ( Base ` Z ) i^i ( Base ` Z ) ) = ( Base ` Z ) |
| 15 |
9 11 12 13 13 14
|
off |
|- ( ph -> ( X oF x. Y ) : ( Base ` Z ) --> CC ) |
| 16 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
| 17 |
10 16
|
unitcl |
|- ( x e. ( Unit ` Z ) -> x e. ( Base ` Z ) ) |
| 18 |
10 16
|
unitcl |
|- ( y e. ( Unit ` Z ) -> y e. ( Base ` Z ) ) |
| 19 |
17 18
|
anim12i |
|- ( ( x e. ( Unit ` Z ) /\ y e. ( Unit ` Z ) ) -> ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) |
| 20 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
| 21 |
5 20
|
syl |
|- ( ph -> N e. NN ) |
| 22 |
1 2 10 16 21 3
|
dchrelbas2 |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) |
| 23 |
5 22
|
mpbid |
|- ( ph -> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
| 24 |
23
|
simpld |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
| 25 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 26 |
25 10
|
mgpbas |
|- ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) |
| 27 |
|
eqid |
|- ( .r ` Z ) = ( .r ` Z ) |
| 28 |
25 27
|
mgpplusg |
|- ( .r ` Z ) = ( +g ` ( mulGrp ` Z ) ) |
| 29 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 30 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 31 |
29 30
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 32 |
26 28 31
|
mhmlin |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
| 33 |
32
|
3expb |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
| 34 |
24 33
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
| 35 |
1 2 10 16 21 3
|
dchrelbas2 |
|- ( ph -> ( Y e. D <-> ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( Y ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) |
| 36 |
6 35
|
mpbid |
|- ( ph -> ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( Y ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
| 37 |
36
|
simpld |
|- ( ph -> Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
| 38 |
26 28 31
|
mhmlin |
|- ( ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
| 39 |
38
|
3expb |
|- ( ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
| 40 |
37 39
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
| 41 |
34 40
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) = ( ( ( X ` x ) x. ( X ` y ) ) x. ( ( Y ` x ) x. ( Y ` y ) ) ) ) |
| 42 |
11
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( X ` x ) e. CC ) |
| 43 |
42
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` x ) e. CC ) |
| 44 |
|
simpr |
|- ( ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> y e. ( Base ` Z ) ) |
| 45 |
|
ffvelcdm |
|- ( ( X : ( Base ` Z ) --> CC /\ y e. ( Base ` Z ) ) -> ( X ` y ) e. CC ) |
| 46 |
11 44 45
|
syl2an |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` y ) e. CC ) |
| 47 |
12
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( Y ` x ) e. CC ) |
| 48 |
47
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` x ) e. CC ) |
| 49 |
|
ffvelcdm |
|- ( ( Y : ( Base ` Z ) --> CC /\ y e. ( Base ` Z ) ) -> ( Y ` y ) e. CC ) |
| 50 |
12 44 49
|
syl2an |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` y ) e. CC ) |
| 51 |
43 46 48 50
|
mul4d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( ( X ` x ) x. ( X ` y ) ) x. ( ( Y ` x ) x. ( Y ` y ) ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
| 52 |
41 51
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
| 53 |
11
|
ffnd |
|- ( ph -> X Fn ( Base ` Z ) ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> X Fn ( Base ` Z ) ) |
| 55 |
12
|
ffnd |
|- ( ph -> Y Fn ( Base ` Z ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> Y Fn ( Base ` Z ) ) |
| 57 |
|
fvexd |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Base ` Z ) e. _V ) |
| 58 |
21
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 59 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
| 60 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
| 61 |
58 59 60
|
3syl |
|- ( ph -> Z e. Ring ) |
| 62 |
10 27
|
ringcl |
|- ( ( Z e. Ring /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
| 63 |
62
|
3expb |
|- ( ( Z e. Ring /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
| 64 |
61 63
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
| 65 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) ) |
| 66 |
54 56 57 64 65
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) ) |
| 67 |
53
|
adantr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> X Fn ( Base ` Z ) ) |
| 68 |
55
|
adantr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> Y Fn ( Base ` Z ) ) |
| 69 |
|
fvexd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( Base ` Z ) e. _V ) |
| 70 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> x e. ( Base ` Z ) ) |
| 71 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ x e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
| 72 |
67 68 69 70 71
|
syl22anc |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
| 73 |
72
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
| 74 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> y e. ( Base ` Z ) ) |
| 75 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` y ) = ( ( X ` y ) x. ( Y ` y ) ) ) |
| 76 |
54 56 57 74 75
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` y ) = ( ( X ` y ) x. ( Y ` y ) ) ) |
| 77 |
73 76
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
| 78 |
52 66 77
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
| 79 |
19 78
|
sylan2 |
|- ( ( ph /\ ( x e. ( Unit ` Z ) /\ y e. ( Unit ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
| 80 |
79
|
ralrimivva |
|- ( ph -> A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
| 81 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
| 82 |
10 81
|
ringidcl |
|- ( Z e. Ring -> ( 1r ` Z ) e. ( Base ` Z ) ) |
| 83 |
61 82
|
syl |
|- ( ph -> ( 1r ` Z ) e. ( Base ` Z ) ) |
| 84 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ ( 1r ` Z ) e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) ) |
| 85 |
53 55 13 83 84
|
syl22anc |
|- ( ph -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) ) |
| 86 |
25 81
|
ringidval |
|- ( 1r ` Z ) = ( 0g ` ( mulGrp ` Z ) ) |
| 87 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 88 |
29 87
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 89 |
86 88
|
mhm0 |
|- ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( X ` ( 1r ` Z ) ) = 1 ) |
| 90 |
24 89
|
syl |
|- ( ph -> ( X ` ( 1r ` Z ) ) = 1 ) |
| 91 |
86 88
|
mhm0 |
|- ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( Y ` ( 1r ` Z ) ) = 1 ) |
| 92 |
37 91
|
syl |
|- ( ph -> ( Y ` ( 1r ` Z ) ) = 1 ) |
| 93 |
90 92
|
oveq12d |
|- ( ph -> ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) = ( 1 x. 1 ) ) |
| 94 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 95 |
93 94
|
eqtrdi |
|- ( ph -> ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) = 1 ) |
| 96 |
85 95
|
eqtrd |
|- ( ph -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 ) |
| 97 |
72
|
neeq1d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 <-> ( ( X ` x ) x. ( Y ` x ) ) =/= 0 ) ) |
| 98 |
42 47
|
mulne0bd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) <-> ( ( X ` x ) x. ( Y ` x ) ) =/= 0 ) ) |
| 99 |
97 98
|
bitr4d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 <-> ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) ) ) |
| 100 |
23
|
simprd |
|- ( ph -> A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
| 101 |
100
|
r19.21bi |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
| 102 |
101
|
adantrd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) -> x e. ( Unit ` Z ) ) ) |
| 103 |
99 102
|
sylbid |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
| 104 |
103
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
| 105 |
80 96 104
|
3jca |
|- ( ph -> ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) /\ ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 /\ A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
| 106 |
1 2 10 16 21 3
|
dchrelbas3 |
|- ( ph -> ( ( X oF x. Y ) e. D <-> ( ( X oF x. Y ) : ( Base ` Z ) --> CC /\ ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) /\ ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 /\ A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) ) |
| 107 |
15 105 106
|
mpbir2and |
|- ( ph -> ( X oF x. Y ) e. D ) |
| 108 |
7 107
|
eqeltrd |
|- ( ph -> ( X .x. Y ) e. D ) |