Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
4 |
|
dchrmul.t |
|- .x. = ( +g ` G ) |
5 |
|
dchrmul.x |
|- ( ph -> X e. D ) |
6 |
|
dchrmul.y |
|- ( ph -> Y e. D ) |
7 |
1 2 3 4 5 6
|
dchrmul |
|- ( ph -> ( X .x. Y ) = ( X oF x. Y ) ) |
8 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
9 |
8
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
10 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
11 |
1 2 3 10 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
12 |
1 2 3 10 6
|
dchrf |
|- ( ph -> Y : ( Base ` Z ) --> CC ) |
13 |
|
fvexd |
|- ( ph -> ( Base ` Z ) e. _V ) |
14 |
|
inidm |
|- ( ( Base ` Z ) i^i ( Base ` Z ) ) = ( Base ` Z ) |
15 |
9 11 12 13 13 14
|
off |
|- ( ph -> ( X oF x. Y ) : ( Base ` Z ) --> CC ) |
16 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
17 |
10 16
|
unitcl |
|- ( x e. ( Unit ` Z ) -> x e. ( Base ` Z ) ) |
18 |
10 16
|
unitcl |
|- ( y e. ( Unit ` Z ) -> y e. ( Base ` Z ) ) |
19 |
17 18
|
anim12i |
|- ( ( x e. ( Unit ` Z ) /\ y e. ( Unit ` Z ) ) -> ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) |
20 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
21 |
5 20
|
syl |
|- ( ph -> N e. NN ) |
22 |
1 2 10 16 21 3
|
dchrelbas2 |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) |
23 |
5 22
|
mpbid |
|- ( ph -> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
24 |
23
|
simpld |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
25 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
26 |
25 10
|
mgpbas |
|- ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) |
27 |
|
eqid |
|- ( .r ` Z ) = ( .r ` Z ) |
28 |
25 27
|
mgpplusg |
|- ( .r ` Z ) = ( +g ` ( mulGrp ` Z ) ) |
29 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
30 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
31 |
29 30
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
32 |
26 28 31
|
mhmlin |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
33 |
32
|
3expb |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
34 |
24 33
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
35 |
1 2 10 16 21 3
|
dchrelbas2 |
|- ( ph -> ( Y e. D <-> ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( Y ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) |
36 |
6 35
|
mpbid |
|- ( ph -> ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. ( Base ` Z ) ( ( Y ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
37 |
36
|
simpld |
|- ( ph -> Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
38 |
26 28 31
|
mhmlin |
|- ( ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
39 |
38
|
3expb |
|- ( ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
40 |
37 39
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` ( x ( .r ` Z ) y ) ) = ( ( Y ` x ) x. ( Y ` y ) ) ) |
41 |
34 40
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) = ( ( ( X ` x ) x. ( X ` y ) ) x. ( ( Y ` x ) x. ( Y ` y ) ) ) ) |
42 |
11
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( X ` x ) e. CC ) |
43 |
42
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` x ) e. CC ) |
44 |
|
simpr |
|- ( ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> y e. ( Base ` Z ) ) |
45 |
|
ffvelrn |
|- ( ( X : ( Base ` Z ) --> CC /\ y e. ( Base ` Z ) ) -> ( X ` y ) e. CC ) |
46 |
11 44 45
|
syl2an |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( X ` y ) e. CC ) |
47 |
12
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( Y ` x ) e. CC ) |
48 |
47
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` x ) e. CC ) |
49 |
|
ffvelrn |
|- ( ( Y : ( Base ` Z ) --> CC /\ y e. ( Base ` Z ) ) -> ( Y ` y ) e. CC ) |
50 |
12 44 49
|
syl2an |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Y ` y ) e. CC ) |
51 |
43 46 48 50
|
mul4d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( ( X ` x ) x. ( X ` y ) ) x. ( ( Y ` x ) x. ( Y ` y ) ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
52 |
41 51
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
53 |
11
|
ffnd |
|- ( ph -> X Fn ( Base ` Z ) ) |
54 |
53
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> X Fn ( Base ` Z ) ) |
55 |
12
|
ffnd |
|- ( ph -> Y Fn ( Base ` Z ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> Y Fn ( Base ` Z ) ) |
57 |
|
fvexd |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( Base ` Z ) e. _V ) |
58 |
21
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
59 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
60 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
61 |
58 59 60
|
3syl |
|- ( ph -> Z e. Ring ) |
62 |
10 27
|
ringcl |
|- ( ( Z e. Ring /\ x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
63 |
62
|
3expb |
|- ( ( Z e. Ring /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
64 |
61 63
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) |
65 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ ( x ( .r ` Z ) y ) e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) ) |
66 |
54 56 57 64 65
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( X ` ( x ( .r ` Z ) y ) ) x. ( Y ` ( x ( .r ` Z ) y ) ) ) ) |
67 |
53
|
adantr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> X Fn ( Base ` Z ) ) |
68 |
55
|
adantr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> Y Fn ( Base ` Z ) ) |
69 |
|
fvexd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( Base ` Z ) e. _V ) |
70 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> x e. ( Base ` Z ) ) |
71 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ x e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
72 |
67 68 69 70 71
|
syl22anc |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
73 |
72
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` x ) = ( ( X ` x ) x. ( Y ` x ) ) ) |
74 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> y e. ( Base ` Z ) ) |
75 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` y ) = ( ( X ` y ) x. ( Y ` y ) ) ) |
76 |
54 56 57 74 75
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` y ) = ( ( X ` y ) x. ( Y ` y ) ) ) |
77 |
73 76
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) = ( ( ( X ` x ) x. ( Y ` x ) ) x. ( ( X ` y ) x. ( Y ` y ) ) ) ) |
78 |
52 66 77
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` Z ) /\ y e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
79 |
19 78
|
sylan2 |
|- ( ( ph /\ ( x e. ( Unit ` Z ) /\ y e. ( Unit ` Z ) ) ) -> ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
80 |
79
|
ralrimivva |
|- ( ph -> A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) ) |
81 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
82 |
10 81
|
ringidcl |
|- ( Z e. Ring -> ( 1r ` Z ) e. ( Base ` Z ) ) |
83 |
61 82
|
syl |
|- ( ph -> ( 1r ` Z ) e. ( Base ` Z ) ) |
84 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ ( ( Base ` Z ) e. _V /\ ( 1r ` Z ) e. ( Base ` Z ) ) ) -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) ) |
85 |
53 55 13 83 84
|
syl22anc |
|- ( ph -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) ) |
86 |
25 81
|
ringidval |
|- ( 1r ` Z ) = ( 0g ` ( mulGrp ` Z ) ) |
87 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
88 |
29 87
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
89 |
86 88
|
mhm0 |
|- ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( X ` ( 1r ` Z ) ) = 1 ) |
90 |
24 89
|
syl |
|- ( ph -> ( X ` ( 1r ` Z ) ) = 1 ) |
91 |
86 88
|
mhm0 |
|- ( Y e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( Y ` ( 1r ` Z ) ) = 1 ) |
92 |
37 91
|
syl |
|- ( ph -> ( Y ` ( 1r ` Z ) ) = 1 ) |
93 |
90 92
|
oveq12d |
|- ( ph -> ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) = ( 1 x. 1 ) ) |
94 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
95 |
93 94
|
eqtrdi |
|- ( ph -> ( ( X ` ( 1r ` Z ) ) x. ( Y ` ( 1r ` Z ) ) ) = 1 ) |
96 |
85 95
|
eqtrd |
|- ( ph -> ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 ) |
97 |
72
|
neeq1d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 <-> ( ( X ` x ) x. ( Y ` x ) ) =/= 0 ) ) |
98 |
42 47
|
mulne0bd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) <-> ( ( X ` x ) x. ( Y ` x ) ) =/= 0 ) ) |
99 |
97 98
|
bitr4d |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 <-> ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) ) ) |
100 |
23
|
simprd |
|- ( ph -> A. x e. ( Base ` Z ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
101 |
100
|
r19.21bi |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
102 |
101
|
adantrd |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X ` x ) =/= 0 /\ ( Y ` x ) =/= 0 ) -> x e. ( Unit ` Z ) ) ) |
103 |
99 102
|
sylbid |
|- ( ( ph /\ x e. ( Base ` Z ) ) -> ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
104 |
103
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) |
105 |
80 96 104
|
3jca |
|- ( ph -> ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) /\ ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 /\ A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) |
106 |
1 2 10 16 21 3
|
dchrelbas3 |
|- ( ph -> ( ( X oF x. Y ) e. D <-> ( ( X oF x. Y ) : ( Base ` Z ) --> CC /\ ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( ( X oF x. Y ) ` ( x ( .r ` Z ) y ) ) = ( ( ( X oF x. Y ) ` x ) x. ( ( X oF x. Y ) ` y ) ) /\ ( ( X oF x. Y ) ` ( 1r ` Z ) ) = 1 /\ A. x e. ( Base ` Z ) ( ( ( X oF x. Y ) ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) ) |
107 |
15 105 106
|
mpbir2and |
|- ( ph -> ( X oF x. Y ) e. D ) |
108 |
7 107
|
eqeltrd |
|- ( ph -> ( X .x. Y ) e. D ) |