Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
4 |
|
dchrn0.b |
|- B = ( Base ` Z ) |
5 |
|
dchrn0.u |
|- U = ( Unit ` Z ) |
6 |
|
dchrn0.x |
|- ( ph -> X e. D ) |
7 |
|
dchrn0.a |
|- ( ph -> A e. B ) |
8 |
|
fveq2 |
|- ( x = A -> ( X ` x ) = ( X ` A ) ) |
9 |
8
|
neeq1d |
|- ( x = A -> ( ( X ` x ) =/= 0 <-> ( X ` A ) =/= 0 ) ) |
10 |
|
eleq1 |
|- ( x = A -> ( x e. U <-> A e. U ) ) |
11 |
9 10
|
imbi12d |
|- ( x = A -> ( ( ( X ` x ) =/= 0 -> x e. U ) <-> ( ( X ` A ) =/= 0 -> A e. U ) ) ) |
12 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
13 |
6 12
|
syl |
|- ( ph -> N e. NN ) |
14 |
1 2 4 5 13 3
|
dchrelbas2 |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) ) |
15 |
6 14
|
mpbid |
|- ( ph -> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) |
16 |
15
|
simprd |
|- ( ph -> A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) |
17 |
11 16 7
|
rspcdva |
|- ( ph -> ( ( X ` A ) =/= 0 -> A e. U ) ) |
18 |
17
|
imp |
|- ( ( ph /\ ( X ` A ) =/= 0 ) -> A e. U ) |
19 |
|
ax-1ne0 |
|- 1 =/= 0 |
20 |
19
|
a1i |
|- ( ( ph /\ A e. U ) -> 1 =/= 0 ) |
21 |
13
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
22 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
23 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
24 |
21 22 23
|
3syl |
|- ( ph -> Z e. Ring ) |
25 |
|
eqid |
|- ( invr ` Z ) = ( invr ` Z ) |
26 |
|
eqid |
|- ( .r ` Z ) = ( .r ` Z ) |
27 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
28 |
5 25 26 27
|
unitrinv |
|- ( ( Z e. Ring /\ A e. U ) -> ( A ( .r ` Z ) ( ( invr ` Z ) ` A ) ) = ( 1r ` Z ) ) |
29 |
24 28
|
sylan |
|- ( ( ph /\ A e. U ) -> ( A ( .r ` Z ) ( ( invr ` Z ) ` A ) ) = ( 1r ` Z ) ) |
30 |
29
|
fveq2d |
|- ( ( ph /\ A e. U ) -> ( X ` ( A ( .r ` Z ) ( ( invr ` Z ) ` A ) ) ) = ( X ` ( 1r ` Z ) ) ) |
31 |
15
|
simpld |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ A e. U ) -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
33 |
7
|
adantr |
|- ( ( ph /\ A e. U ) -> A e. B ) |
34 |
5 25 4
|
ringinvcl |
|- ( ( Z e. Ring /\ A e. U ) -> ( ( invr ` Z ) ` A ) e. B ) |
35 |
24 34
|
sylan |
|- ( ( ph /\ A e. U ) -> ( ( invr ` Z ) ` A ) e. B ) |
36 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
37 |
36 4
|
mgpbas |
|- B = ( Base ` ( mulGrp ` Z ) ) |
38 |
36 26
|
mgpplusg |
|- ( .r ` Z ) = ( +g ` ( mulGrp ` Z ) ) |
39 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
40 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
41 |
39 40
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
42 |
37 38 41
|
mhmlin |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A e. B /\ ( ( invr ` Z ) ` A ) e. B ) -> ( X ` ( A ( .r ` Z ) ( ( invr ` Z ) ` A ) ) ) = ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) ) |
43 |
32 33 35 42
|
syl3anc |
|- ( ( ph /\ A e. U ) -> ( X ` ( A ( .r ` Z ) ( ( invr ` Z ) ` A ) ) ) = ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) ) |
44 |
36 27
|
ringidval |
|- ( 1r ` Z ) = ( 0g ` ( mulGrp ` Z ) ) |
45 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
46 |
39 45
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
47 |
44 46
|
mhm0 |
|- ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( X ` ( 1r ` Z ) ) = 1 ) |
48 |
32 47
|
syl |
|- ( ( ph /\ A e. U ) -> ( X ` ( 1r ` Z ) ) = 1 ) |
49 |
30 43 48
|
3eqtr3d |
|- ( ( ph /\ A e. U ) -> ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) = 1 ) |
50 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
51 |
39 50
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
52 |
37 51
|
mhmf |
|- ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> X : B --> CC ) |
53 |
32 52
|
syl |
|- ( ( ph /\ A e. U ) -> X : B --> CC ) |
54 |
53 35
|
ffvelrnd |
|- ( ( ph /\ A e. U ) -> ( X ` ( ( invr ` Z ) ` A ) ) e. CC ) |
55 |
54
|
mul02d |
|- ( ( ph /\ A e. U ) -> ( 0 x. ( X ` ( ( invr ` Z ) ` A ) ) ) = 0 ) |
56 |
20 49 55
|
3netr4d |
|- ( ( ph /\ A e. U ) -> ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) =/= ( 0 x. ( X ` ( ( invr ` Z ) ` A ) ) ) ) |
57 |
|
oveq1 |
|- ( ( X ` A ) = 0 -> ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) = ( 0 x. ( X ` ( ( invr ` Z ) ` A ) ) ) ) |
58 |
57
|
necon3i |
|- ( ( ( X ` A ) x. ( X ` ( ( invr ` Z ) ` A ) ) ) =/= ( 0 x. ( X ` ( ( invr ` Z ) ` A ) ) ) -> ( X ` A ) =/= 0 ) |
59 |
56 58
|
syl |
|- ( ( ph /\ A e. U ) -> ( X ` A ) =/= 0 ) |
60 |
18 59
|
impbida |
|- ( ph -> ( ( X ` A ) =/= 0 <-> A e. U ) ) |