Step |
Hyp |
Ref |
Expression |
1 |
|
dchrpt.g |
|- G = ( DChr ` N ) |
2 |
|
dchrpt.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrpt.d |
|- D = ( Base ` G ) |
4 |
|
dchrpt.b |
|- B = ( Base ` Z ) |
5 |
|
dchrpt.1 |
|- .1. = ( 1r ` Z ) |
6 |
|
dchrpt.n |
|- ( ph -> N e. NN ) |
7 |
|
dchrpt.n1 |
|- ( ph -> A =/= .1. ) |
8 |
|
dchrpt.a |
|- ( ph -> A e. B ) |
9 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> N e. NN ) |
10 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> A =/= .1. ) |
11 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
12 |
|
eqid |
|- ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) = ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) |
13 |
|
eqid |
|- ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) = ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) |
14 |
|
oveq1 |
|- ( n = b -> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) = ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) |
15 |
14
|
cbvmptv |
|- ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) = ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) |
16 |
|
fveq2 |
|- ( k = a -> ( w ` k ) = ( w ` a ) ) |
17 |
16
|
oveq2d |
|- ( k = a -> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) = ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` a ) ) ) |
18 |
17
|
mpteq2dv |
|- ( k = a -> ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) = ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` a ) ) ) ) |
19 |
15 18
|
syl5eq |
|- ( k = a -> ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) = ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` a ) ) ) ) |
20 |
19
|
rneqd |
|- ( k = a -> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) = ran ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` a ) ) ) ) |
21 |
20
|
cbvmptv |
|- ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) = ( a e. dom w |-> ran ( b e. ZZ |-> ( b ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` a ) ) ) ) |
22 |
|
simpllr |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> A e. ( Unit ` Z ) ) |
23 |
|
simplr |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> w e. Word ( Unit ` Z ) ) |
24 |
|
simprl |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) |
25 |
|
simprr |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) |
26 |
1 2 3 4 5 9 10 11 12 13 21 22 23 24 25
|
dchrptlem3 |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> E. x e. D ( x ` A ) =/= 1 ) |
27 |
26
|
3adantr1 |
|- ( ( ( ( ph /\ A e. ( Unit ` Z ) ) /\ w e. Word ( Unit ` Z ) ) /\ ( ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) : dom w --> { u e. ( SubGrp ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) | ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) |`s u ) e. ( CycGrp i^i ran pGrp ) } /\ ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) -> E. x e. D ( x ` A ) =/= 1 ) |
28 |
11 12
|
unitgrpbas |
|- ( Unit ` Z ) = ( Base ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) |
29 |
|
eqid |
|- { u e. ( SubGrp ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) | ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) |`s u ) e. ( CycGrp i^i ran pGrp ) } = { u e. ( SubGrp ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) | ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) |`s u ) e. ( CycGrp i^i ran pGrp ) } |
30 |
6
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
31 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
32 |
11 12
|
unitabl |
|- ( Z e. CRing -> ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) e. Abel ) |
33 |
30 31 32
|
3syl |
|- ( ph -> ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) e. Abel ) |
34 |
33
|
adantr |
|- ( ( ph /\ A e. ( Unit ` Z ) ) -> ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) e. Abel ) |
35 |
2 4
|
znfi |
|- ( N e. NN -> B e. Fin ) |
36 |
6 35
|
syl |
|- ( ph -> B e. Fin ) |
37 |
4 11
|
unitss |
|- ( Unit ` Z ) C_ B |
38 |
|
ssfi |
|- ( ( B e. Fin /\ ( Unit ` Z ) C_ B ) -> ( Unit ` Z ) e. Fin ) |
39 |
36 37 38
|
sylancl |
|- ( ph -> ( Unit ` Z ) e. Fin ) |
40 |
39
|
adantr |
|- ( ( ph /\ A e. ( Unit ` Z ) ) -> ( Unit ` Z ) e. Fin ) |
41 |
|
eqid |
|- ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) = ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) |
42 |
28 29 34 40 13 41
|
ablfac2 |
|- ( ( ph /\ A e. ( Unit ` Z ) ) -> E. w e. Word ( Unit ` Z ) ( ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) : dom w --> { u e. ( SubGrp ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) | ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) |`s u ) e. ( CycGrp i^i ran pGrp ) } /\ ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) dom DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) /\ ( ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) DProd ( k e. dom w |-> ran ( n e. ZZ |-> ( n ( .g ` ( ( mulGrp ` Z ) |`s ( Unit ` Z ) ) ) ( w ` k ) ) ) ) ) = ( Unit ` Z ) ) ) |
43 |
27 42
|
r19.29a |
|- ( ( ph /\ A e. ( Unit ` Z ) ) -> E. x e. D ( x ` A ) =/= 1 ) |
44 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
45 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
46 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
47 |
3 46
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. D ) |
48 |
6 44 45 47
|
4syl |
|- ( ph -> ( 0g ` G ) e. D ) |
49 |
|
0ne1 |
|- 0 =/= 1 |
50 |
1 2 3 4 11 48 8
|
dchrn0 |
|- ( ph -> ( ( ( 0g ` G ) ` A ) =/= 0 <-> A e. ( Unit ` Z ) ) ) |
51 |
50
|
necon1bbid |
|- ( ph -> ( -. A e. ( Unit ` Z ) <-> ( ( 0g ` G ) ` A ) = 0 ) ) |
52 |
51
|
biimpa |
|- ( ( ph /\ -. A e. ( Unit ` Z ) ) -> ( ( 0g ` G ) ` A ) = 0 ) |
53 |
52
|
neeq1d |
|- ( ( ph /\ -. A e. ( Unit ` Z ) ) -> ( ( ( 0g ` G ) ` A ) =/= 1 <-> 0 =/= 1 ) ) |
54 |
49 53
|
mpbiri |
|- ( ( ph /\ -. A e. ( Unit ` Z ) ) -> ( ( 0g ` G ) ` A ) =/= 1 ) |
55 |
|
fveq1 |
|- ( x = ( 0g ` G ) -> ( x ` A ) = ( ( 0g ` G ) ` A ) ) |
56 |
55
|
neeq1d |
|- ( x = ( 0g ` G ) -> ( ( x ` A ) =/= 1 <-> ( ( 0g ` G ) ` A ) =/= 1 ) ) |
57 |
56
|
rspcev |
|- ( ( ( 0g ` G ) e. D /\ ( ( 0g ` G ) ` A ) =/= 1 ) -> E. x e. D ( x ` A ) =/= 1 ) |
58 |
48 54 57
|
syl2an2r |
|- ( ( ph /\ -. A e. ( Unit ` Z ) ) -> E. x e. D ( x ` A ) =/= 1 ) |
59 |
43 58
|
pm2.61dan |
|- ( ph -> E. x e. D ( x ` A ) =/= 1 ) |