Metamath Proof Explorer


Theorem dchrrcl

Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses dchrrcl.g
|- G = ( DChr ` N )
dchrrcl.b
|- D = ( Base ` G )
Assertion dchrrcl
|- ( X e. D -> N e. NN )

Proof

Step Hyp Ref Expression
1 dchrrcl.g
 |-  G = ( DChr ` N )
2 dchrrcl.b
 |-  D = ( Base ` G )
3 df-dchr
 |-  DChr = ( n e. NN |-> [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } )
4 3 dmmptss
 |-  dom DChr C_ NN
5 n0i
 |-  ( X e. D -> -. D = (/) )
6 ndmfv
 |-  ( -. N e. dom DChr -> ( DChr ` N ) = (/) )
7 1 6 eqtrid
 |-  ( -. N e. dom DChr -> G = (/) )
8 fveq2
 |-  ( G = (/) -> ( Base ` G ) = ( Base ` (/) ) )
9 base0
 |-  (/) = ( Base ` (/) )
10 8 2 9 3eqtr4g
 |-  ( G = (/) -> D = (/) )
11 7 10 syl
 |-  ( -. N e. dom DChr -> D = (/) )
12 5 11 nsyl2
 |-  ( X e. D -> N e. dom DChr )
13 4 12 sselid
 |-  ( X e. D -> N e. NN )