Step |
Hyp |
Ref |
Expression |
1 |
|
dchrsum.g |
|- G = ( DChr ` N ) |
2 |
|
dchrsum.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrsum.d |
|- D = ( Base ` G ) |
4 |
|
dchrsum.1 |
|- .1. = ( 0g ` G ) |
5 |
|
dchrsum.x |
|- ( ph -> X e. D ) |
6 |
|
dchrsum.b |
|- B = ( Base ` Z ) |
7 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
8 |
6 7
|
unitss |
|- ( Unit ` Z ) C_ B |
9 |
8
|
a1i |
|- ( ph -> ( Unit ` Z ) C_ B ) |
10 |
1 2 3 6 5
|
dchrf |
|- ( ph -> X : B --> CC ) |
11 |
8
|
sseli |
|- ( a e. ( Unit ` Z ) -> a e. B ) |
12 |
|
ffvelrn |
|- ( ( X : B --> CC /\ a e. B ) -> ( X ` a ) e. CC ) |
13 |
10 11 12
|
syl2an |
|- ( ( ph /\ a e. ( Unit ` Z ) ) -> ( X ` a ) e. CC ) |
14 |
|
eldif |
|- ( a e. ( B \ ( Unit ` Z ) ) <-> ( a e. B /\ -. a e. ( Unit ` Z ) ) ) |
15 |
5
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. D ) |
16 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
17 |
1 2 3 6 7 15 16
|
dchrn0 |
|- ( ( ph /\ a e. B ) -> ( ( X ` a ) =/= 0 <-> a e. ( Unit ` Z ) ) ) |
18 |
17
|
biimpd |
|- ( ( ph /\ a e. B ) -> ( ( X ` a ) =/= 0 -> a e. ( Unit ` Z ) ) ) |
19 |
18
|
necon1bd |
|- ( ( ph /\ a e. B ) -> ( -. a e. ( Unit ` Z ) -> ( X ` a ) = 0 ) ) |
20 |
19
|
impr |
|- ( ( ph /\ ( a e. B /\ -. a e. ( Unit ` Z ) ) ) -> ( X ` a ) = 0 ) |
21 |
14 20
|
sylan2b |
|- ( ( ph /\ a e. ( B \ ( Unit ` Z ) ) ) -> ( X ` a ) = 0 ) |
22 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
23 |
2 6
|
znfi |
|- ( N e. NN -> B e. Fin ) |
24 |
5 22 23
|
3syl |
|- ( ph -> B e. Fin ) |
25 |
9 13 21 24
|
fsumss |
|- ( ph -> sum_ a e. ( Unit ` Z ) ( X ` a ) = sum_ a e. B ( X ` a ) ) |
26 |
1 2 3 4 5 7
|
dchrsum2 |
|- ( ph -> sum_ a e. ( Unit ` Z ) ( X ` a ) = if ( X = .1. , ( phi ` N ) , 0 ) ) |
27 |
25 26
|
eqtr3d |
|- ( ph -> sum_ a e. B ( X ` a ) = if ( X = .1. , ( phi ` N ) , 0 ) ) |