Step |
Hyp |
Ref |
Expression |
1 |
|
dchrval.g |
|- G = ( DChr ` N ) |
2 |
|
dchrval.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrval.b |
|- B = ( Base ` Z ) |
4 |
|
dchrval.u |
|- U = ( Unit ` Z ) |
5 |
|
dchrval.n |
|- ( ph -> N e. NN ) |
6 |
|
dchrval.d |
|- ( ph -> D = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) |
7 |
|
df-dchr |
|- DChr = ( n e. NN |-> [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } ) |
8 |
|
fvexd |
|- ( ( ph /\ n = N ) -> ( Z/nZ ` n ) e. _V ) |
9 |
|
ovex |
|- ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) e. _V |
10 |
9
|
rabex |
|- { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } e. _V |
11 |
10
|
a1i |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } e. _V ) |
12 |
6
|
ad2antrr |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> D = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) |
13 |
|
simpr |
|- ( ( ph /\ n = N ) -> n = N ) |
14 |
13
|
fveq2d |
|- ( ( ph /\ n = N ) -> ( Z/nZ ` n ) = ( Z/nZ ` N ) ) |
15 |
2 14
|
eqtr4id |
|- ( ( ph /\ n = N ) -> Z = ( Z/nZ ` n ) ) |
16 |
15
|
eqeq2d |
|- ( ( ph /\ n = N ) -> ( z = Z <-> z = ( Z/nZ ` n ) ) ) |
17 |
16
|
biimpar |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> z = Z ) |
18 |
17
|
fveq2d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( mulGrp ` z ) = ( mulGrp ` Z ) ) |
19 |
18
|
oveq1d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) = ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
20 |
17
|
fveq2d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( Base ` z ) = ( Base ` Z ) ) |
21 |
20 3
|
eqtr4di |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( Base ` z ) = B ) |
22 |
17
|
fveq2d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( Unit ` z ) = ( Unit ` Z ) ) |
23 |
22 4
|
eqtr4di |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( Unit ` z ) = U ) |
24 |
21 23
|
difeq12d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( ( Base ` z ) \ ( Unit ` z ) ) = ( B \ U ) ) |
25 |
24
|
xpeq1d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) = ( ( B \ U ) X. { 0 } ) ) |
26 |
25
|
sseq1d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x <-> ( ( B \ U ) X. { 0 } ) C_ x ) ) |
27 |
19 26
|
rabeqbidv |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) |
28 |
12 27
|
eqtr4d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> D = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) |
29 |
28
|
eqeq2d |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> ( b = D <-> b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) ) |
30 |
29
|
biimpar |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> b = D ) |
31 |
30
|
opeq2d |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , D >. ) |
32 |
30
|
sqxpeqd |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> ( b X. b ) = ( D X. D ) ) |
33 |
32
|
reseq2d |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> ( oF x. |` ( b X. b ) ) = ( oF x. |` ( D X. D ) ) ) |
34 |
33
|
opeq2d |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. = <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. ) |
35 |
31 34
|
preq12d |
|- ( ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) /\ b = { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
36 |
11 35
|
csbied |
|- ( ( ( ph /\ n = N ) /\ z = ( Z/nZ ` n ) ) -> [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
37 |
8 36
|
csbied |
|- ( ( ph /\ n = N ) -> [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
38 |
|
prex |
|- { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } e. _V |
39 |
38
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } e. _V ) |
40 |
7 37 5 39
|
fvmptd2 |
|- ( ph -> ( DChr ` N ) = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
41 |
1 40
|
syl5eq |
|- ( ph -> G = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |