| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
| 8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
| 9 |
|
dchrvmasumif.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
| 10 |
|
dchrvmasumif.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 11 |
|
dchrvmasumif.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
| 12 |
|
dchrvmasumif.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / y ) ) |
| 13 |
|
dchrvmaeq0.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
| 14 |
|
eldifsn |
|- ( X e. ( D \ { .1. } ) <-> ( X e. D /\ X =/= .1. ) ) |
| 15 |
7 8 14
|
sylanbrc |
|- ( ph -> X e. ( D \ { .1. } ) ) |
| 16 |
|
fveq1 |
|- ( y = X -> ( y ` ( L ` m ) ) = ( X ` ( L ` m ) ) ) |
| 17 |
16
|
oveq1d |
|- ( y = X -> ( ( y ` ( L ` m ) ) / m ) = ( ( X ` ( L ` m ) ) / m ) ) |
| 18 |
17
|
sumeq2sdv |
|- ( y = X -> sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) ) |
| 19 |
18
|
eqeq1d |
|- ( y = X -> ( sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 <-> sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = 0 ) ) |
| 20 |
19 13
|
elrab2 |
|- ( X e. W <-> ( X e. ( D \ { .1. } ) /\ sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = 0 ) ) |
| 21 |
20
|
baib |
|- ( X e. ( D \ { .1. } ) -> ( X e. W <-> sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = 0 ) ) |
| 22 |
15 21
|
syl |
|- ( ph -> ( X e. W <-> sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = 0 ) ) |
| 23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 24 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 25 |
|
2fveq3 |
|- ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) |
| 26 |
|
id |
|- ( a = m -> a = m ) |
| 27 |
25 26
|
oveq12d |
|- ( a = m -> ( ( X ` ( L ` a ) ) / a ) = ( ( X ` ( L ` m ) ) / m ) ) |
| 28 |
|
ovex |
|- ( ( X ` ( L ` m ) ) / m ) e. _V |
| 29 |
27 9 28
|
fvmpt |
|- ( m e. NN -> ( F ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( F ` m ) = ( ( X ` ( L ` m ) ) / m ) ) |
| 31 |
7
|
adantr |
|- ( ( ph /\ m e. NN ) -> X e. D ) |
| 32 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. ZZ ) |
| 34 |
4 1 5 2 31 33
|
dchrzrhcl |
|- ( ( ph /\ m e. NN ) -> ( X ` ( L ` m ) ) e. CC ) |
| 35 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 37 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
| 39 |
34 36 38
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
| 40 |
23 24 30 39 11
|
isumclim |
|- ( ph -> sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = S ) |
| 41 |
40
|
eqeq1d |
|- ( ph -> ( sum_ m e. NN ( ( X ` ( L ` m ) ) / m ) = 0 <-> S = 0 ) ) |
| 42 |
22 41
|
bitrd |
|- ( ph -> ( X e. W <-> S = 0 ) ) |