Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
9 |
|
dchrvmasum.a |
|- ( ph -> A e. RR+ ) |
10 |
|
dchrvmasum2.2 |
|- ( ph -> 1 <_ A ) |
11 |
|
2fveq3 |
|- ( n = ( d x. m ) -> ( X ` ( L ` n ) ) = ( X ` ( L ` ( d x. m ) ) ) ) |
12 |
|
id |
|- ( n = ( d x. m ) -> n = ( d x. m ) ) |
13 |
11 12
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( X ` ( L ` n ) ) / n ) = ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) ) |
14 |
|
oveq2 |
|- ( n = ( d x. m ) -> ( A / n ) = ( A / ( d x. m ) ) ) |
15 |
14
|
fveq2d |
|- ( n = ( d x. m ) -> ( log ` ( A / n ) ) = ( log ` ( A / ( d x. m ) ) ) ) |
16 |
13 15
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) = ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) |
17 |
16
|
oveq2d |
|- ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
18 |
9
|
rpred |
|- ( ph -> A e. RR ) |
19 |
|
elrabi |
|- ( d e. { x e. NN | x || n } -> d e. NN ) |
20 |
19
|
ad2antll |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> d e. NN ) |
21 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
22 |
20 21
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. ZZ ) |
23 |
22
|
zcnd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. CC ) |
24 |
7
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
25 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. ZZ ) |
26 |
25
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. ZZ ) |
27 |
4 1 5 2 24 26
|
dchrzrhcl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
28 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
29 |
28
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
30 |
29
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. CC ) |
31 |
29
|
nnne0d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n =/= 0 ) |
32 |
27 30 31
|
divcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` n ) ) / n ) e. CC ) |
33 |
28
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. RR+ ) |
34 |
|
rpdivcl |
|- ( ( A e. RR+ /\ n e. RR+ ) -> ( A / n ) e. RR+ ) |
35 |
9 33 34
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( A / n ) e. RR+ ) |
36 |
35
|
relogcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / n ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / n ) ) e. CC ) |
38 |
32 37
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) e. CC ) |
39 |
38
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) e. CC ) |
40 |
23 39
|
mulcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) e. CC ) |
41 |
17 18 40
|
dvdsflsumcom |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
42 |
|
2fveq3 |
|- ( n = 1 -> ( X ` ( L ` n ) ) = ( X ` ( L ` 1 ) ) ) |
43 |
|
id |
|- ( n = 1 -> n = 1 ) |
44 |
42 43
|
oveq12d |
|- ( n = 1 -> ( ( X ` ( L ` n ) ) / n ) = ( ( X ` ( L ` 1 ) ) / 1 ) ) |
45 |
|
oveq2 |
|- ( n = 1 -> ( A / n ) = ( A / 1 ) ) |
46 |
45
|
fveq2d |
|- ( n = 1 -> ( log ` ( A / n ) ) = ( log ` ( A / 1 ) ) ) |
47 |
44 46
|
oveq12d |
|- ( n = 1 -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) = ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) ) |
48 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
49 |
|
fz1ssnn |
|- ( 1 ... ( |_ ` A ) ) C_ NN |
50 |
49
|
a1i |
|- ( ph -> ( 1 ... ( |_ ` A ) ) C_ NN ) |
51 |
|
flge1nn |
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN ) |
52 |
18 10 51
|
syl2anc |
|- ( ph -> ( |_ ` A ) e. NN ) |
53 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
54 |
52 53
|
eleqtrdi |
|- ( ph -> ( |_ ` A ) e. ( ZZ>= ` 1 ) ) |
55 |
|
eluzfz1 |
|- ( ( |_ ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
56 |
54 55
|
syl |
|- ( ph -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
57 |
47 48 50 56 38
|
musumsum |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) ) |
58 |
4 1 5 2 7
|
dchrzrh1 |
|- ( ph -> ( X ` ( L ` 1 ) ) = 1 ) |
59 |
58
|
oveq1d |
|- ( ph -> ( ( X ` ( L ` 1 ) ) / 1 ) = ( 1 / 1 ) ) |
60 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
61 |
59 60
|
eqtrdi |
|- ( ph -> ( ( X ` ( L ` 1 ) ) / 1 ) = 1 ) |
62 |
9
|
rpcnd |
|- ( ph -> A e. CC ) |
63 |
62
|
div1d |
|- ( ph -> ( A / 1 ) = A ) |
64 |
63
|
fveq2d |
|- ( ph -> ( log ` ( A / 1 ) ) = ( log ` A ) ) |
65 |
61 64
|
oveq12d |
|- ( ph -> ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) = ( 1 x. ( log ` A ) ) ) |
66 |
9
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
67 |
66
|
recnd |
|- ( ph -> ( log ` A ) e. CC ) |
68 |
67
|
mulid2d |
|- ( ph -> ( 1 x. ( log ` A ) ) = ( log ` A ) ) |
69 |
57 65 68
|
3eqtrrd |
|- ( ph -> ( log ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) ) |
70 |
|
fzfid |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / d ) ) ) e. Fin ) |
71 |
7
|
adantr |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
72 |
|
elfzelz |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. ZZ ) |
73 |
72
|
adantl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. ZZ ) |
74 |
4 1 5 2 71 73
|
dchrzrhcl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
75 |
|
fznnfl |
|- ( A e. RR -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
76 |
18 75
|
syl |
|- ( ph -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
77 |
76
|
simprbda |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. NN ) |
78 |
77 21
|
syl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. ZZ ) |
79 |
78
|
zred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. RR ) |
80 |
79 77
|
nndivred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. RR ) |
81 |
80
|
recnd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. CC ) |
82 |
74 81
|
mulcld |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) e. CC ) |
83 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> X e. D ) |
84 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. ZZ ) |
85 |
84
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. ZZ ) |
86 |
4 1 5 2 83 85
|
dchrzrhcl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
87 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. NN ) |
88 |
87
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. RR+ ) |
89 |
|
rpdivcl |
|- ( ( A e. RR+ /\ d e. RR+ ) -> ( A / d ) e. RR+ ) |
90 |
9 88 89
|
syl2an |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A / d ) e. RR+ ) |
91 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. NN ) |
92 |
91
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. RR+ ) |
93 |
|
rpdivcl |
|- ( ( ( A / d ) e. RR+ /\ m e. RR+ ) -> ( ( A / d ) / m ) e. RR+ ) |
94 |
90 92 93
|
syl2an |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( A / d ) / m ) e. RR+ ) |
95 |
94
|
relogcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( ( A / d ) / m ) ) e. RR ) |
96 |
91
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. NN ) |
97 |
95 96
|
nndivred |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` ( ( A / d ) / m ) ) / m ) e. RR ) |
98 |
97
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` ( ( A / d ) / m ) ) / m ) e. CC ) |
99 |
86 98
|
mulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) e. CC ) |
100 |
70 82 99
|
fsummulc2 |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) ) |
101 |
74
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
102 |
79
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. RR ) |
103 |
102
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. CC ) |
104 |
77
|
nnrpd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. RR+ ) |
105 |
104
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. RR+ ) |
106 |
105
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( d e. CC /\ d =/= 0 ) ) |
107 |
|
div12 |
|- ( ( ( X ` ( L ` d ) ) e. CC /\ ( mmu ` d ) e. CC /\ ( d e. CC /\ d =/= 0 ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) = ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) ) |
108 |
101 103 106 107
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) = ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) ) |
109 |
95
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( ( A / d ) / m ) ) e. CC ) |
110 |
96
|
nnrpd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. RR+ ) |
111 |
110
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( m e. CC /\ m =/= 0 ) ) |
112 |
|
div12 |
|- ( ( ( X ` ( L ` m ) ) e. CC /\ ( log ` ( ( A / d ) / m ) ) e. CC /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
113 |
86 109 111 112
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
114 |
108 113
|
oveq12d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
115 |
105
|
rpcnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. CC ) |
116 |
105
|
rpne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d =/= 0 ) |
117 |
101 115 116
|
divcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` d ) ) / d ) e. CC ) |
118 |
96
|
nncnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. CC ) |
119 |
96
|
nnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m =/= 0 ) |
120 |
86 118 119
|
divcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
121 |
117 120
|
mulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) e. CC ) |
122 |
103 109 121
|
mulassd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( log ` ( ( A / d ) / m ) ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) ) |
123 |
103 117 109 120
|
mul4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( ( mmu ` d ) x. ( log ` ( ( A / d ) / m ) ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
124 |
72
|
ad2antlr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. ZZ ) |
125 |
4 1 5 2 83 124 85
|
dchrzrhmul |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` ( d x. m ) ) ) = ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) ) |
126 |
125
|
oveq1d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
127 |
|
divmuldiv |
|- ( ( ( ( X ` ( L ` d ) ) e. CC /\ ( X ` ( L ` m ) ) e. CC ) /\ ( ( d e. CC /\ d =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
128 |
101 86 106 111 127
|
syl22anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
129 |
126 128
|
eqtr4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) = ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
130 |
62
|
ad2antrr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> A e. CC ) |
131 |
|
divdiv1 |
|- ( ( A e. CC /\ ( d e. CC /\ d =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( A / d ) / m ) = ( A / ( d x. m ) ) ) |
132 |
130 106 111 131
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( A / d ) / m ) = ( A / ( d x. m ) ) ) |
133 |
132
|
eqcomd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( A / ( d x. m ) ) = ( ( A / d ) / m ) ) |
134 |
133
|
fveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( A / ( d x. m ) ) ) = ( log ` ( ( A / d ) / m ) ) ) |
135 |
129 134
|
oveq12d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) = ( ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) x. ( log ` ( ( A / d ) / m ) ) ) ) |
136 |
121 109
|
mulcomd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) x. ( log ` ( ( A / d ) / m ) ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
137 |
135 136
|
eqtrd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
138 |
137
|
oveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) ) |
139 |
122 123 138
|
3eqtr4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
140 |
114 139
|
eqtrd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
141 |
140
|
sumeq2dv |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
142 |
100 141
|
eqtrd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
143 |
142
|
sumeq2dv |
|- ( ph -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
144 |
41 69 143
|
3eqtr4d |
|- ( ph -> ( log ` A ) = sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) ) |