Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
9 |
|
dchrvmasum.a |
|- ( ph -> A e. RR+ ) |
10 |
|
2fveq3 |
|- ( n = ( d x. m ) -> ( X ` ( L ` n ) ) = ( X ` ( L ` ( d x. m ) ) ) ) |
11 |
|
oveq2 |
|- ( n = ( d x. m ) -> ( ( mmu ` d ) / n ) = ( ( mmu ` d ) / ( d x. m ) ) ) |
12 |
|
fvoveq1 |
|- ( n = ( d x. m ) -> ( log ` ( n / d ) ) = ( log ` ( ( d x. m ) / d ) ) ) |
13 |
11 12
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) = ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) |
14 |
10 13
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) = ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
15 |
9
|
rpred |
|- ( ph -> A e. RR ) |
16 |
7
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
17 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. ZZ ) |
18 |
17
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. ZZ ) |
19 |
4 1 5 2 16 18
|
dchrzrhcl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
20 |
19
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( X ` ( L ` n ) ) e. CC ) |
21 |
|
elrabi |
|- ( d e. { x e. NN | x || n } -> d e. NN ) |
22 |
21
|
ad2antll |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> d e. NN ) |
23 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
24 |
22 23
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. ZZ ) |
25 |
24
|
zred |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. RR ) |
26 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
27 |
26
|
ad2antrl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> n e. NN ) |
28 |
25 27
|
nndivred |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( mmu ` d ) / n ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( mmu ` d ) / n ) e. CC ) |
30 |
27
|
nnrpd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> n e. RR+ ) |
31 |
22
|
nnrpd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> d e. RR+ ) |
32 |
30 31
|
rpdivcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( n / d ) e. RR+ ) |
33 |
32
|
relogcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( log ` ( n / d ) ) e. RR ) |
34 |
33
|
recnd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( log ` ( n / d ) ) e. CC ) |
35 |
29 34
|
mulcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) e. CC ) |
36 |
20 35
|
mulcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) e. CC ) |
37 |
14 15 36
|
dvdsflsumcom |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
38 |
|
vmaf |
|- Lam : NN --> RR |
39 |
38
|
a1i |
|- ( ph -> Lam : NN --> RR ) |
40 |
|
ax-resscn |
|- RR C_ CC |
41 |
|
fss |
|- ( ( Lam : NN --> RR /\ RR C_ CC ) -> Lam : NN --> CC ) |
42 |
39 40 41
|
sylancl |
|- ( ph -> Lam : NN --> CC ) |
43 |
|
vmasum |
|- ( m e. NN -> sum_ i e. { x e. NN | x || m } ( Lam ` i ) = ( log ` m ) ) |
44 |
43
|
adantl |
|- ( ( ph /\ m e. NN ) -> sum_ i e. { x e. NN | x || m } ( Lam ` i ) = ( log ` m ) ) |
45 |
44
|
eqcomd |
|- ( ( ph /\ m e. NN ) -> ( log ` m ) = sum_ i e. { x e. NN | x || m } ( Lam ` i ) ) |
46 |
45
|
mpteq2dva |
|- ( ph -> ( m e. NN |-> ( log ` m ) ) = ( m e. NN |-> sum_ i e. { x e. NN | x || m } ( Lam ` i ) ) ) |
47 |
42 46
|
muinv |
|- ( ph -> Lam = ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) ) |
48 |
47
|
fveq1d |
|- ( ph -> ( Lam ` n ) = ( ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) ` n ) ) |
49 |
|
sumex |
|- sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) e. _V |
50 |
|
eqid |
|- ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) = ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) |
51 |
50
|
fvmpt2 |
|- ( ( n e. NN /\ sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) e. _V ) -> ( ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) ` n ) = sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) |
52 |
26 49 51
|
sylancl |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> ( ( n e. NN |-> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) ` n ) = sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) |
53 |
48 52
|
sylan9eq |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) = sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) ) |
54 |
|
breq1 |
|- ( x = d -> ( x || n <-> d || n ) ) |
55 |
54
|
elrab |
|- ( d e. { x e. NN | x || n } <-> ( d e. NN /\ d || n ) ) |
56 |
55
|
simprbi |
|- ( d e. { x e. NN | x || n } -> d || n ) |
57 |
56
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> d || n ) |
58 |
26
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
59 |
|
nndivdvds |
|- ( ( n e. NN /\ d e. NN ) -> ( d || n <-> ( n / d ) e. NN ) ) |
60 |
58 21 59
|
syl2an |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( d || n <-> ( n / d ) e. NN ) ) |
61 |
57 60
|
mpbid |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( n / d ) e. NN ) |
62 |
|
fveq2 |
|- ( m = ( n / d ) -> ( log ` m ) = ( log ` ( n / d ) ) ) |
63 |
|
eqid |
|- ( m e. NN |-> ( log ` m ) ) = ( m e. NN |-> ( log ` m ) ) |
64 |
|
fvex |
|- ( log ` ( n / d ) ) e. _V |
65 |
62 63 64
|
fvmpt |
|- ( ( n / d ) e. NN -> ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) = ( log ` ( n / d ) ) ) |
66 |
61 65
|
syl |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) = ( log ` ( n / d ) ) ) |
67 |
66
|
oveq2d |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) = ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) ) |
68 |
67
|
sumeq2dv |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( m e. NN |-> ( log ` m ) ) ` ( n / d ) ) ) = sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) ) |
69 |
53 68
|
eqtrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) = sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) ) |
70 |
69
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) / n ) = ( sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) / n ) ) |
71 |
|
fzfid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... n ) e. Fin ) |
72 |
|
dvdsssfz1 |
|- ( n e. NN -> { x e. NN | x || n } C_ ( 1 ... n ) ) |
73 |
58 72
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { x e. NN | x || n } C_ ( 1 ... n ) ) |
74 |
71 73
|
ssfid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { x e. NN | x || n } e. Fin ) |
75 |
58
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. CC ) |
76 |
24
|
zcnd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. CC ) |
77 |
76
|
anassrs |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( mmu ` d ) e. CC ) |
78 |
34
|
anassrs |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( log ` ( n / d ) ) e. CC ) |
79 |
77 78
|
mulcld |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) e. CC ) |
80 |
58
|
nnne0d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n =/= 0 ) |
81 |
74 75 79 80
|
fsumdivc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) / n ) = sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) / n ) ) |
82 |
21
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> d e. NN ) |
83 |
82 23
|
syl |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( mmu ` d ) e. ZZ ) |
84 |
83
|
zcnd |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( mmu ` d ) e. CC ) |
85 |
75
|
adantr |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> n e. CC ) |
86 |
80
|
adantr |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> n =/= 0 ) |
87 |
84 78 85 86
|
div23d |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) / n ) = ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) |
88 |
87
|
sumeq2dv |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) x. ( log ` ( n / d ) ) ) / n ) = sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) |
89 |
70 81 88
|
3eqtrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) / n ) = sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) |
90 |
89
|
oveq2d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = ( ( X ` ( L ` n ) ) x. sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) ) |
91 |
35
|
anassrs |
|- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. { x e. NN | x || n } ) -> ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) e. CC ) |
92 |
74 19 91
|
fsummulc2 |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` n ) ) x. sum_ d e. { x e. NN | x || n } ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) = sum_ d e. { x e. NN | x || n } ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) ) |
93 |
90 92
|
eqtrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = sum_ d e. { x e. NN | x || n } ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) ) |
94 |
93
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( X ` ( L ` n ) ) x. ( ( ( mmu ` d ) / n ) x. ( log ` ( n / d ) ) ) ) ) |
95 |
|
fzfid |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / d ) ) ) e. Fin ) |
96 |
7
|
adantr |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
97 |
|
elfzelz |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. ZZ ) |
98 |
97
|
adantl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. ZZ ) |
99 |
4 1 5 2 96 98
|
dchrzrhcl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
100 |
|
fznnfl |
|- ( A e. RR -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
101 |
15 100
|
syl |
|- ( ph -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
102 |
101
|
simprbda |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. NN ) |
103 |
102 23
|
syl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. ZZ ) |
104 |
103
|
zred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. RR ) |
105 |
104 102
|
nndivred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. RR ) |
106 |
105
|
recnd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. CC ) |
107 |
99 106
|
mulcld |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) e. CC ) |
108 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> X e. D ) |
109 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. ZZ ) |
110 |
109
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. ZZ ) |
111 |
4 1 5 2 108 110
|
dchrzrhcl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
112 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. NN ) |
113 |
112
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. NN ) |
114 |
113
|
nnrpd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. RR+ ) |
115 |
114
|
relogcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` m ) e. RR ) |
116 |
115 113
|
nndivred |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` m ) / m ) e. RR ) |
117 |
116
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` m ) / m ) e. CC ) |
118 |
111 117
|
mulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) e. CC ) |
119 |
95 107 118
|
fsummulc2 |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) ) |
120 |
99
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
121 |
106
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( mmu ` d ) / d ) e. CC ) |
122 |
120 121 111 117
|
mul4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) x. ( ( ( mmu ` d ) / d ) x. ( ( log ` m ) / m ) ) ) ) |
123 |
97
|
ad2antlr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. ZZ ) |
124 |
4 1 5 2 108 123 110
|
dchrzrhmul |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` ( d x. m ) ) ) = ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) ) |
125 |
104
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. RR ) |
126 |
125
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. CC ) |
127 |
115
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` m ) e. CC ) |
128 |
102
|
nnrpd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. RR+ ) |
129 |
128
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. RR+ ) |
130 |
129 114
|
rpmulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( d x. m ) e. RR+ ) |
131 |
130
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( d x. m ) e. CC /\ ( d x. m ) =/= 0 ) ) |
132 |
|
div23 |
|- ( ( ( mmu ` d ) e. CC /\ ( log ` m ) e. CC /\ ( ( d x. m ) e. CC /\ ( d x. m ) =/= 0 ) ) -> ( ( ( mmu ` d ) x. ( log ` m ) ) / ( d x. m ) ) = ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` m ) ) ) |
133 |
126 127 131 132
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( log ` m ) ) / ( d x. m ) ) = ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` m ) ) ) |
134 |
129
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( d e. CC /\ d =/= 0 ) ) |
135 |
114
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( m e. CC /\ m =/= 0 ) ) |
136 |
|
divmuldiv |
|- ( ( ( ( mmu ` d ) e. CC /\ ( log ` m ) e. CC ) /\ ( ( d e. CC /\ d =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) ) -> ( ( ( mmu ` d ) / d ) x. ( ( log ` m ) / m ) ) = ( ( ( mmu ` d ) x. ( log ` m ) ) / ( d x. m ) ) ) |
137 |
126 127 134 135 136
|
syl22anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) / d ) x. ( ( log ` m ) / m ) ) = ( ( ( mmu ` d ) x. ( log ` m ) ) / ( d x. m ) ) ) |
138 |
113
|
nncnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. CC ) |
139 |
129
|
rpcnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. CC ) |
140 |
129
|
rpne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d =/= 0 ) |
141 |
138 139 140
|
divcan3d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( d x. m ) / d ) = m ) |
142 |
141
|
fveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( ( d x. m ) / d ) ) = ( log ` m ) ) |
143 |
142
|
oveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) = ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` m ) ) ) |
144 |
133 137 143
|
3eqtr4rd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) = ( ( ( mmu ` d ) / d ) x. ( ( log ` m ) / m ) ) ) |
145 |
124 144
|
oveq12d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) x. ( ( ( mmu ` d ) / d ) x. ( ( log ` m ) / m ) ) ) ) |
146 |
122 145
|
eqtr4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
147 |
146
|
sumeq2dv |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
148 |
119 147
|
eqtrd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
149 |
148
|
sumeq2dv |
|- ( ph -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` ( d x. m ) ) ) x. ( ( ( mmu ` d ) / ( d x. m ) ) x. ( log ` ( ( d x. m ) / d ) ) ) ) ) |
150 |
37 94 149
|
3eqtr4d |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` m ) / m ) ) ) ) |