Step |
Hyp |
Ref |
Expression |
1 |
|
1n0 |
|- 1o =/= (/) |
2 |
|
df-br |
|- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) <-> <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } ) |
3 |
|
elsni |
|- ( <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } -> <. ( f ` n ) , ( f ` suc n ) >. = <. 1o , 1o >. ) |
4 |
|
fvex |
|- ( f ` n ) e. _V |
5 |
|
fvex |
|- ( f ` suc n ) e. _V |
6 |
4 5
|
opth1 |
|- ( <. ( f ` n ) , ( f ` suc n ) >. = <. 1o , 1o >. -> ( f ` n ) = 1o ) |
7 |
3 6
|
syl |
|- ( <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } -> ( f ` n ) = 1o ) |
8 |
2 7
|
sylbi |
|- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> ( f ` n ) = 1o ) |
9 |
|
tz6.12i |
|- ( 1o =/= (/) -> ( ( f ` n ) = 1o -> n f 1o ) ) |
10 |
1 8 9
|
mpsyl |
|- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> n f 1o ) |
11 |
|
vex |
|- n e. _V |
12 |
|
1oex |
|- 1o e. _V |
13 |
11 12
|
breldm |
|- ( n f 1o -> n e. dom f ) |
14 |
10 13
|
syl |
|- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> n e. dom f ) |
15 |
14
|
ralimi |
|- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> A. n e. _om n e. dom f ) |
16 |
|
dfss3 |
|- ( _om C_ dom f <-> A. n e. _om n e. dom f ) |
17 |
15 16
|
sylibr |
|- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> _om C_ dom f ) |
18 |
|
vex |
|- f e. _V |
19 |
18
|
dmex |
|- dom f e. _V |
20 |
19
|
ssex |
|- ( _om C_ dom f -> _om e. _V ) |
21 |
17 20
|
syl |
|- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> _om e. _V ) |
22 |
|
snex |
|- { <. 1o , 1o >. } e. _V |
23 |
12 12
|
fvsn |
|- ( { <. 1o , 1o >. } ` 1o ) = 1o |
24 |
12 12
|
funsn |
|- Fun { <. 1o , 1o >. } |
25 |
12
|
snid |
|- 1o e. { 1o } |
26 |
12
|
dmsnop |
|- dom { <. 1o , 1o >. } = { 1o } |
27 |
25 26
|
eleqtrri |
|- 1o e. dom { <. 1o , 1o >. } |
28 |
|
funbrfvb |
|- ( ( Fun { <. 1o , 1o >. } /\ 1o e. dom { <. 1o , 1o >. } ) -> ( ( { <. 1o , 1o >. } ` 1o ) = 1o <-> 1o { <. 1o , 1o >. } 1o ) ) |
29 |
24 27 28
|
mp2an |
|- ( ( { <. 1o , 1o >. } ` 1o ) = 1o <-> 1o { <. 1o , 1o >. } 1o ) |
30 |
23 29
|
mpbi |
|- 1o { <. 1o , 1o >. } 1o |
31 |
|
breq12 |
|- ( ( s = 1o /\ t = 1o ) -> ( s { <. 1o , 1o >. } t <-> 1o { <. 1o , 1o >. } 1o ) ) |
32 |
12 12 31
|
spc2ev |
|- ( 1o { <. 1o , 1o >. } 1o -> E. s E. t s { <. 1o , 1o >. } t ) |
33 |
30 32
|
ax-mp |
|- E. s E. t s { <. 1o , 1o >. } t |
34 |
|
breq |
|- ( x = { <. 1o , 1o >. } -> ( s x t <-> s { <. 1o , 1o >. } t ) ) |
35 |
34
|
2exbidv |
|- ( x = { <. 1o , 1o >. } -> ( E. s E. t s x t <-> E. s E. t s { <. 1o , 1o >. } t ) ) |
36 |
33 35
|
mpbiri |
|- ( x = { <. 1o , 1o >. } -> E. s E. t s x t ) |
37 |
|
ssid |
|- { 1o } C_ { 1o } |
38 |
12
|
rnsnop |
|- ran { <. 1o , 1o >. } = { 1o } |
39 |
37 38 26
|
3sstr4i |
|- ran { <. 1o , 1o >. } C_ dom { <. 1o , 1o >. } |
40 |
|
rneq |
|- ( x = { <. 1o , 1o >. } -> ran x = ran { <. 1o , 1o >. } ) |
41 |
|
dmeq |
|- ( x = { <. 1o , 1o >. } -> dom x = dom { <. 1o , 1o >. } ) |
42 |
40 41
|
sseq12d |
|- ( x = { <. 1o , 1o >. } -> ( ran x C_ dom x <-> ran { <. 1o , 1o >. } C_ dom { <. 1o , 1o >. } ) ) |
43 |
39 42
|
mpbiri |
|- ( x = { <. 1o , 1o >. } -> ran x C_ dom x ) |
44 |
|
pm5.5 |
|- ( ( E. s E. t s x t /\ ran x C_ dom x ) -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
45 |
36 43 44
|
syl2anc |
|- ( x = { <. 1o , 1o >. } -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
46 |
|
breq |
|- ( x = { <. 1o , 1o >. } -> ( ( f ` n ) x ( f ` suc n ) <-> ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
47 |
46
|
ralbidv |
|- ( x = { <. 1o , 1o >. } -> ( A. n e. _om ( f ` n ) x ( f ` suc n ) <-> A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
48 |
47
|
exbidv |
|- ( x = { <. 1o , 1o >. } -> ( E. f A. n e. _om ( f ` n ) x ( f ` suc n ) <-> E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
49 |
45 48
|
bitrd |
|- ( x = { <. 1o , 1o >. } -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
50 |
|
ax-dc |
|- ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |
51 |
22 49 50
|
vtocl |
|- E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) |
52 |
21 51
|
exlimiiv |
|- _om e. _V |