Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|- ( ph -> P e. CC ) |
2 |
|
dcubic.d |
|- ( ph -> Q e. CC ) |
3 |
|
dcubic.x |
|- ( ph -> X e. CC ) |
4 |
|
dcubic.t |
|- ( ph -> T e. CC ) |
5 |
|
dcubic.3 |
|- ( ph -> ( T ^ 3 ) = ( G - N ) ) |
6 |
|
dcubic.g |
|- ( ph -> G e. CC ) |
7 |
|
dcubic.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
8 |
|
dcubic.m |
|- ( ph -> M = ( P / 3 ) ) |
9 |
|
dcubic.n |
|- ( ph -> N = ( Q / 2 ) ) |
10 |
|
dcubic.0 |
|- ( ph -> T =/= 0 ) |
11 |
10
|
adantr |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> T =/= 0 ) |
12 |
4
|
adantr |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> T e. CC ) |
13 |
|
3z |
|- 3 e. ZZ |
14 |
|
expne0i |
|- ( ( T e. CC /\ T =/= 0 /\ 3 e. ZZ ) -> ( T ^ 3 ) =/= 0 ) |
15 |
13 14
|
mp3an3 |
|- ( ( T e. CC /\ T =/= 0 ) -> ( T ^ 3 ) =/= 0 ) |
16 |
15
|
ex |
|- ( T e. CC -> ( T =/= 0 -> ( T ^ 3 ) =/= 0 ) ) |
17 |
12 16
|
syl |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> ( T =/= 0 -> ( T ^ 3 ) =/= 0 ) ) |
18 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( T ^ 3 ) = ( G - N ) ) |
19 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> G e. CC ) |
20 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
21 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> N = ( Q / 2 ) ) |
22 |
|
simprl |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> X = 0 ) |
23 |
22
|
oveq2d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( P x. X ) = ( P x. 0 ) ) |
24 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> P e. CC ) |
25 |
24
|
mul01d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( P x. 0 ) = 0 ) |
26 |
23 25
|
eqtrd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( P x. X ) = 0 ) |
27 |
26
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( P x. X ) + Q ) = ( 0 + Q ) ) |
28 |
22
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( X ^ 3 ) = ( 0 ^ 3 ) ) |
29 |
|
3nn |
|- 3 e. NN |
30 |
|
0exp |
|- ( 3 e. NN -> ( 0 ^ 3 ) = 0 ) |
31 |
29 30
|
ax-mp |
|- ( 0 ^ 3 ) = 0 |
32 |
28 31
|
eqtrdi |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( X ^ 3 ) = 0 ) |
33 |
32
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = ( 0 + ( ( P x. X ) + Q ) ) ) |
34 |
|
simplr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |
35 |
|
0cnd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> 0 e. CC ) |
36 |
26 35
|
eqeltrd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( P x. X ) e. CC ) |
37 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> Q e. CC ) |
38 |
36 37
|
addcld |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( P x. X ) + Q ) e. CC ) |
39 |
38
|
addid2d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 0 + ( ( P x. X ) + Q ) ) = ( ( P x. X ) + Q ) ) |
40 |
33 34 39
|
3eqtr3rd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( P x. X ) + Q ) = 0 ) |
41 |
37
|
addid2d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 0 + Q ) = Q ) |
42 |
27 40 41
|
3eqtr3rd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> Q = 0 ) |
43 |
42
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( Q / 2 ) = ( 0 / 2 ) ) |
44 |
|
2cn |
|- 2 e. CC |
45 |
|
2ne0 |
|- 2 =/= 0 |
46 |
44 45
|
div0i |
|- ( 0 / 2 ) = 0 |
47 |
43 46
|
eqtrdi |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( Q / 2 ) = 0 ) |
48 |
21 47
|
eqtrd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> N = 0 ) |
49 |
48
|
sq0id |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( N ^ 2 ) = 0 ) |
50 |
|
3cn |
|- 3 e. CC |
51 |
50
|
a1i |
|- ( ph -> 3 e. CC ) |
52 |
|
3ne0 |
|- 3 =/= 0 |
53 |
52
|
a1i |
|- ( ph -> 3 =/= 0 ) |
54 |
1 51 53
|
divcld |
|- ( ph -> ( P / 3 ) e. CC ) |
55 |
8 54
|
eqeltrd |
|- ( ph -> M e. CC ) |
56 |
55
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> M e. CC ) |
57 |
|
4cn |
|- 4 e. CC |
58 |
57
|
a1i |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> 4 e. CC ) |
59 |
|
4ne0 |
|- 4 =/= 0 |
60 |
59
|
a1i |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> 4 =/= 0 ) |
61 |
22
|
sq0id |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( X ^ 2 ) = 0 ) |
62 |
61
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( X ^ 2 ) + ( 4 x. M ) ) = ( 0 + ( 4 x. M ) ) ) |
63 |
3
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
64 |
|
mulcl |
|- ( ( 4 e. CC /\ M e. CC ) -> ( 4 x. M ) e. CC ) |
65 |
57 55 64
|
sylancr |
|- ( ph -> ( 4 x. M ) e. CC ) |
66 |
63 65
|
addcld |
|- ( ph -> ( ( X ^ 2 ) + ( 4 x. M ) ) e. CC ) |
67 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( X ^ 2 ) + ( 4 x. M ) ) e. CC ) |
68 |
|
simprr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) |
69 |
67 68
|
sqr00d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( X ^ 2 ) + ( 4 x. M ) ) = 0 ) |
70 |
65
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 4 x. M ) e. CC ) |
71 |
70
|
addid2d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 0 + ( 4 x. M ) ) = ( 4 x. M ) ) |
72 |
62 69 71
|
3eqtr3rd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 4 x. M ) = 0 ) |
73 |
57
|
mul01i |
|- ( 4 x. 0 ) = 0 |
74 |
72 73
|
eqtr4di |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( 4 x. M ) = ( 4 x. 0 ) ) |
75 |
56 35 58 60 74
|
mulcanad |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> M = 0 ) |
76 |
75
|
oveq1d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( M ^ 3 ) = ( 0 ^ 3 ) ) |
77 |
76 31
|
eqtrdi |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( M ^ 3 ) = 0 ) |
78 |
49 77
|
oveq12d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( N ^ 2 ) + ( M ^ 3 ) ) = ( 0 + 0 ) ) |
79 |
|
00id |
|- ( 0 + 0 ) = 0 |
80 |
78 79
|
eqtrdi |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( ( N ^ 2 ) + ( M ^ 3 ) ) = 0 ) |
81 |
20 80
|
eqtrd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( G ^ 2 ) = 0 ) |
82 |
19 81
|
sqeq0d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> G = 0 ) |
83 |
82 48
|
oveq12d |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( G - N ) = ( 0 - 0 ) ) |
84 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
85 |
83 84
|
eqtrdi |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( G - N ) = 0 ) |
86 |
18 85
|
eqtrd |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> ( T ^ 3 ) = 0 ) |
87 |
86
|
ex |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> ( ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) -> ( T ^ 3 ) = 0 ) ) |
88 |
87
|
necon3ad |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> ( ( T ^ 3 ) =/= 0 -> -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) ) |
89 |
17 88
|
syld |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> ( T =/= 0 -> -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) ) |
90 |
11 89
|
mpd |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) |
91 |
|
oveq12 |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = ( 0 + 0 ) ) |
92 |
91 79
|
eqtrdi |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 ) |
93 |
|
oveq12 |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = ( 0 - 0 ) ) |
94 |
93 84
|
eqtrdi |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 ) |
95 |
92 94
|
jca |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 /\ ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 ) ) |
96 |
66
|
sqrtcld |
|- ( ph -> ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) e. CC ) |
97 |
|
halfaddsub |
|- ( ( X e. CC /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) e. CC ) -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = X /\ ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) ) |
98 |
3 96 97
|
syl2anc |
|- ( ph -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = X /\ ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) ) |
99 |
98
|
simpld |
|- ( ph -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = X ) |
100 |
99
|
eqeq1d |
|- ( ph -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 <-> X = 0 ) ) |
101 |
98
|
simprd |
|- ( ph -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) |
102 |
101
|
eqeq1d |
|- ( ph -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 <-> ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) |
103 |
100 102
|
anbi12d |
|- ( ph -> ( ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) + ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 /\ ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) - ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) = 0 ) <-> ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) ) |
104 |
95 103
|
syl5ib |
|- ( ph -> ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) -> ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) ) |
105 |
104
|
con3d |
|- ( ph -> ( -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) -> -. ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) ) ) |
106 |
|
eldifi |
|- ( u e. ( CC \ { 0 } ) -> u e. CC ) |
107 |
106
|
adantl |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> u e. CC ) |
108 |
55
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> M e. CC ) |
109 |
|
eldifsni |
|- ( u e. ( CC \ { 0 } ) -> u =/= 0 ) |
110 |
109
|
adantl |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> u =/= 0 ) |
111 |
108 107 110
|
divcld |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( M / u ) e. CC ) |
112 |
3
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> X e. CC ) |
113 |
107 111 112
|
subaddd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( u - ( M / u ) ) = X <-> ( ( M / u ) + X ) = u ) ) |
114 |
|
eqcom |
|- ( X = ( u - ( M / u ) ) <-> ( u - ( M / u ) ) = X ) |
115 |
|
eqcom |
|- ( u = ( ( M / u ) + X ) <-> ( ( M / u ) + X ) = u ) |
116 |
113 114 115
|
3bitr4g |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( X = ( u - ( M / u ) ) <-> u = ( ( M / u ) + X ) ) ) |
117 |
107
|
sqcld |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( u ^ 2 ) e. CC ) |
118 |
112 107
|
mulcld |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( X x. u ) e. CC ) |
119 |
118 108
|
addcld |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( X x. u ) + M ) e. CC ) |
120 |
117 119
|
subeq0ad |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) = 0 <-> ( u ^ 2 ) = ( ( X x. u ) + M ) ) ) |
121 |
107
|
sqvald |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( u ^ 2 ) = ( u x. u ) ) |
122 |
111 112 107
|
adddird |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( M / u ) + X ) x. u ) = ( ( ( M / u ) x. u ) + ( X x. u ) ) ) |
123 |
108 107 110
|
divcan1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( M / u ) x. u ) = M ) |
124 |
123
|
oveq1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( M / u ) x. u ) + ( X x. u ) ) = ( M + ( X x. u ) ) ) |
125 |
108 118
|
addcomd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( M + ( X x. u ) ) = ( ( X x. u ) + M ) ) |
126 |
122 124 125
|
3eqtrrd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( X x. u ) + M ) = ( ( ( M / u ) + X ) x. u ) ) |
127 |
121 126
|
eqeq12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( u ^ 2 ) = ( ( X x. u ) + M ) <-> ( u x. u ) = ( ( ( M / u ) + X ) x. u ) ) ) |
128 |
111 112
|
addcld |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( M / u ) + X ) e. CC ) |
129 |
107 128 107 110
|
mulcan2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( u x. u ) = ( ( ( M / u ) + X ) x. u ) <-> u = ( ( M / u ) + X ) ) ) |
130 |
120 127 129
|
3bitrd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) = 0 <-> u = ( ( M / u ) + X ) ) ) |
131 |
|
1cnd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> 1 e. CC ) |
132 |
|
ax-1ne0 |
|- 1 =/= 0 |
133 |
132
|
a1i |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> 1 =/= 0 ) |
134 |
3
|
negcld |
|- ( ph -> -u X e. CC ) |
135 |
134
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> -u X e. CC ) |
136 |
55
|
negcld |
|- ( ph -> -u M e. CC ) |
137 |
136
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> -u M e. CC ) |
138 |
|
sqneg |
|- ( X e. CC -> ( -u X ^ 2 ) = ( X ^ 2 ) ) |
139 |
112 138
|
syl |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( -u X ^ 2 ) = ( X ^ 2 ) ) |
140 |
137
|
mulid2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 1 x. -u M ) = -u M ) |
141 |
140
|
oveq2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 4 x. ( 1 x. -u M ) ) = ( 4 x. -u M ) ) |
142 |
|
mulneg2 |
|- ( ( 4 e. CC /\ M e. CC ) -> ( 4 x. -u M ) = -u ( 4 x. M ) ) |
143 |
57 108 142
|
sylancr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 4 x. -u M ) = -u ( 4 x. M ) ) |
144 |
141 143
|
eqtrd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 4 x. ( 1 x. -u M ) ) = -u ( 4 x. M ) ) |
145 |
139 144
|
oveq12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( -u X ^ 2 ) - ( 4 x. ( 1 x. -u M ) ) ) = ( ( X ^ 2 ) - -u ( 4 x. M ) ) ) |
146 |
63
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( X ^ 2 ) e. CC ) |
147 |
65
|
adantr |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 4 x. M ) e. CC ) |
148 |
146 147
|
subnegd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( X ^ 2 ) - -u ( 4 x. M ) ) = ( ( X ^ 2 ) + ( 4 x. M ) ) ) |
149 |
145 148
|
eqtr2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( X ^ 2 ) + ( 4 x. M ) ) = ( ( -u X ^ 2 ) - ( 4 x. ( 1 x. -u M ) ) ) ) |
150 |
131 133 135 137 107 149
|
quad |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( 1 x. ( u ^ 2 ) ) + ( ( -u X x. u ) + -u M ) ) = 0 <-> ( u = ( ( -u -u X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) \/ u = ( ( -u -u X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) ) ) ) |
151 |
117
|
mulid2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 1 x. ( u ^ 2 ) ) = ( u ^ 2 ) ) |
152 |
112 107
|
mulneg1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( -u X x. u ) = -u ( X x. u ) ) |
153 |
152
|
oveq1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( -u X x. u ) + -u M ) = ( -u ( X x. u ) + -u M ) ) |
154 |
118 108
|
negdid |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> -u ( ( X x. u ) + M ) = ( -u ( X x. u ) + -u M ) ) |
155 |
153 154
|
eqtr4d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( -u X x. u ) + -u M ) = -u ( ( X x. u ) + M ) ) |
156 |
151 155
|
oveq12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( 1 x. ( u ^ 2 ) ) + ( ( -u X x. u ) + -u M ) ) = ( ( u ^ 2 ) + -u ( ( X x. u ) + M ) ) ) |
157 |
117 119
|
negsubd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( u ^ 2 ) + -u ( ( X x. u ) + M ) ) = ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) ) |
158 |
156 157
|
eqtrd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( 1 x. ( u ^ 2 ) ) + ( ( -u X x. u ) + -u M ) ) = ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) ) |
159 |
158
|
eqeq1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( 1 x. ( u ^ 2 ) ) + ( ( -u X x. u ) + -u M ) ) = 0 <-> ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) = 0 ) ) |
160 |
112
|
negnegd |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> -u -u X = X ) |
161 |
160
|
oveq1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( -u -u X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) = ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) ) |
162 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
163 |
162
|
a1i |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( 2 x. 1 ) = 2 ) |
164 |
161 163
|
oveq12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( -u -u X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) |
165 |
164
|
eqeq2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( u = ( ( -u -u X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) <-> u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) |
166 |
160
|
oveq1d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( -u -u X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) = ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) ) |
167 |
166 163
|
oveq12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( -u -u X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) |
168 |
167
|
eqeq2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( u = ( ( -u -u X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) <-> u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) |
169 |
165 168
|
orbi12d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( u = ( ( -u -u X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) \/ u = ( ( -u -u X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / ( 2 x. 1 ) ) ) <-> ( u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) ) |
170 |
150 159 169
|
3bitr3d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( ( ( u ^ 2 ) - ( ( X x. u ) + M ) ) = 0 <-> ( u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) ) |
171 |
116 130 170
|
3bitr2d |
|- ( ( ph /\ u e. ( CC \ { 0 } ) ) -> ( X = ( u - ( M / u ) ) <-> ( u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) ) |
172 |
171
|
rexbidva |
|- ( ph -> ( E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) <-> E. u e. ( CC \ { 0 } ) ( u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) ) |
173 |
|
r19.43 |
|- ( E. u e. ( CC \ { 0 } ) ( u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) <-> ( E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) |
174 |
172 173
|
bitrdi |
|- ( ph -> ( E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) <-> ( E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) ) ) |
175 |
|
risset |
|- ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) |
176 |
3 96
|
addcld |
|- ( ph -> ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) e. CC ) |
177 |
176
|
halfcld |
|- ( ph -> ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC ) |
178 |
|
eldifsn |
|- ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC /\ ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
179 |
178
|
baib |
|- ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
180 |
177 179
|
syl |
|- ( ph -> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
181 |
175 180
|
bitr3id |
|- ( ph -> ( E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) <-> ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
182 |
|
risset |
|- ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) |
183 |
3 96
|
subcld |
|- ( ph -> ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) e. CC ) |
184 |
183
|
halfcld |
|- ( ph -> ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC ) |
185 |
|
eldifsn |
|- ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
186 |
185
|
baib |
|- ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. CC -> ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
187 |
184 186
|
syl |
|- ( ph -> ( ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) e. ( CC \ { 0 } ) <-> ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
188 |
182 187
|
bitr3id |
|- ( ph -> ( E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) <-> ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) |
189 |
181 188
|
orbi12d |
|- ( ph -> ( ( E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) <-> ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 \/ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) ) ) |
190 |
|
neorian |
|- ( ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 \/ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) =/= 0 ) <-> -. ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) ) |
191 |
189 190
|
bitrdi |
|- ( ph -> ( ( E. u e. ( CC \ { 0 } ) u = ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) \/ E. u e. ( CC \ { 0 } ) u = ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) ) <-> -. ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) ) ) |
192 |
174 191
|
bitrd |
|- ( ph -> ( E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) <-> -. ( ( ( X + ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 /\ ( ( X - ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) ) / 2 ) = 0 ) ) ) |
193 |
105 192
|
sylibrd |
|- ( ph -> ( -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) -> E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) ) ) |
194 |
193
|
imp |
|- ( ( ph /\ -. ( X = 0 /\ ( sqrt ` ( ( X ^ 2 ) + ( 4 x. M ) ) ) = 0 ) ) -> E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) ) |
195 |
90 194
|
syldan |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> E. u e. ( CC \ { 0 } ) X = ( u - ( M / u ) ) ) |
196 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> P e. CC ) |
197 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> Q e. CC ) |
198 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> X e. CC ) |
199 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> T e. CC ) |
200 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> ( T ^ 3 ) = ( G - N ) ) |
201 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> G e. CC ) |
202 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
203 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> M = ( P / 3 ) ) |
204 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> N = ( Q / 2 ) ) |
205 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> T =/= 0 ) |
206 |
106
|
ad2antrl |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> u e. CC ) |
207 |
109
|
ad2antrl |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> u =/= 0 ) |
208 |
|
simprr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> X = ( u - ( M / u ) ) ) |
209 |
|
simplr |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |
210 |
196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
dcubic2 |
|- ( ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) /\ ( u e. ( CC \ { 0 } ) /\ X = ( u - ( M / u ) ) ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
211 |
195 210
|
rexlimddv |
|- ( ( ph /\ ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
212 |
211
|
ex |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) ) |
213 |
1
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> P e. CC ) |
214 |
2
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> Q e. CC ) |
215 |
3
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> X e. CC ) |
216 |
|
simplr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> r e. CC ) |
217 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> T e. CC ) |
218 |
216 217
|
mulcld |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( r x. T ) e. CC ) |
219 |
|
3nn0 |
|- 3 e. NN0 |
220 |
219
|
a1i |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> 3 e. NN0 ) |
221 |
216 217 220
|
mulexpd |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( ( r x. T ) ^ 3 ) = ( ( r ^ 3 ) x. ( T ^ 3 ) ) ) |
222 |
|
simprl |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( r ^ 3 ) = 1 ) |
223 |
222
|
oveq1d |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( ( r ^ 3 ) x. ( T ^ 3 ) ) = ( 1 x. ( T ^ 3 ) ) ) |
224 |
|
expcl |
|- ( ( T e. CC /\ 3 e. NN0 ) -> ( T ^ 3 ) e. CC ) |
225 |
4 219 224
|
sylancl |
|- ( ph -> ( T ^ 3 ) e. CC ) |
226 |
225
|
mulid2d |
|- ( ph -> ( 1 x. ( T ^ 3 ) ) = ( T ^ 3 ) ) |
227 |
226 5
|
eqtrd |
|- ( ph -> ( 1 x. ( T ^ 3 ) ) = ( G - N ) ) |
228 |
227
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( 1 x. ( T ^ 3 ) ) = ( G - N ) ) |
229 |
221 223 228
|
3eqtrd |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( ( r x. T ) ^ 3 ) = ( G - N ) ) |
230 |
6
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> G e. CC ) |
231 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
232 |
8
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> M = ( P / 3 ) ) |
233 |
9
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> N = ( Q / 2 ) ) |
234 |
132
|
a1i |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> 1 =/= 0 ) |
235 |
222 234
|
eqnetrd |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( r ^ 3 ) =/= 0 ) |
236 |
|
oveq1 |
|- ( r = 0 -> ( r ^ 3 ) = ( 0 ^ 3 ) ) |
237 |
236 31
|
eqtrdi |
|- ( r = 0 -> ( r ^ 3 ) = 0 ) |
238 |
237
|
necon3i |
|- ( ( r ^ 3 ) =/= 0 -> r =/= 0 ) |
239 |
235 238
|
syl |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> r =/= 0 ) |
240 |
10
|
ad2antrr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> T =/= 0 ) |
241 |
216 217 239 240
|
mulne0d |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( r x. T ) =/= 0 ) |
242 |
|
simprr |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) |
243 |
213 214 215 218 229 230 231 232 233 241 242
|
dcubic1 |
|- ( ( ( ph /\ r e. CC ) /\ ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |
244 |
243
|
rexlimdva2 |
|- ( ph -> ( E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) ) |
245 |
212 244
|
impbid |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) ) |