| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
|- ( ph -> P e. CC ) |
| 2 |
|
dcubic.d |
|- ( ph -> Q e. CC ) |
| 3 |
|
dcubic.x |
|- ( ph -> X e. CC ) |
| 4 |
|
dcubic.t |
|- ( ph -> T e. CC ) |
| 5 |
|
dcubic.3 |
|- ( ph -> ( T ^ 3 ) = ( G - N ) ) |
| 6 |
|
dcubic.g |
|- ( ph -> G e. CC ) |
| 7 |
|
dcubic.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
| 8 |
|
dcubic.m |
|- ( ph -> M = ( P / 3 ) ) |
| 9 |
|
dcubic.n |
|- ( ph -> N = ( Q / 2 ) ) |
| 10 |
|
dcubic.0 |
|- ( ph -> T =/= 0 ) |
| 11 |
|
dcubic1.x |
|- ( ph -> X = ( T - ( M / T ) ) ) |
| 12 |
5
|
oveq1d |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( G - N ) ^ 2 ) ) |
| 13 |
2
|
halfcld |
|- ( ph -> ( Q / 2 ) e. CC ) |
| 14 |
9 13
|
eqeltrd |
|- ( ph -> N e. CC ) |
| 15 |
|
binom2sub |
|- ( ( G e. CC /\ N e. CC ) -> ( ( G - N ) ^ 2 ) = ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) ) |
| 16 |
6 14 15
|
syl2anc |
|- ( ph -> ( ( G - N ) ^ 2 ) = ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) ) |
| 17 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 18 |
17 6 14
|
mul12d |
|- ( ph -> ( 2 x. ( G x. N ) ) = ( G x. ( 2 x. N ) ) ) |
| 19 |
9
|
oveq2d |
|- ( ph -> ( 2 x. N ) = ( 2 x. ( Q / 2 ) ) ) |
| 20 |
|
2ne0 |
|- 2 =/= 0 |
| 21 |
20
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 22 |
2 17 21
|
divcan2d |
|- ( ph -> ( 2 x. ( Q / 2 ) ) = Q ) |
| 23 |
19 22
|
eqtrd |
|- ( ph -> ( 2 x. N ) = Q ) |
| 24 |
23
|
oveq2d |
|- ( ph -> ( G x. ( 2 x. N ) ) = ( G x. Q ) ) |
| 25 |
6 2
|
mulcomd |
|- ( ph -> ( G x. Q ) = ( Q x. G ) ) |
| 26 |
18 24 25
|
3eqtrd |
|- ( ph -> ( 2 x. ( G x. N ) ) = ( Q x. G ) ) |
| 27 |
7 26
|
oveq12d |
|- ( ph -> ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) = ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
| 28 |
27
|
oveq1d |
|- ( ph -> ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
| 29 |
12 16 28
|
3eqtrd |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
| 30 |
14
|
sqcld |
|- ( ph -> ( N ^ 2 ) e. CC ) |
| 31 |
|
3cn |
|- 3 e. CC |
| 32 |
31
|
a1i |
|- ( ph -> 3 e. CC ) |
| 33 |
|
3ne0 |
|- 3 =/= 0 |
| 34 |
33
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 35 |
1 32 34
|
divcld |
|- ( ph -> ( P / 3 ) e. CC ) |
| 36 |
8 35
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 37 |
|
3nn0 |
|- 3 e. NN0 |
| 38 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
| 39 |
36 37 38
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
| 40 |
30 39
|
addcld |
|- ( ph -> ( ( N ^ 2 ) + ( M ^ 3 ) ) e. CC ) |
| 41 |
2 6
|
mulcld |
|- ( ph -> ( Q x. G ) e. CC ) |
| 42 |
40 30 41
|
addsubd |
|- ( ph -> ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) - ( Q x. G ) ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
| 43 |
30 39 30
|
add32d |
|- ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) = ( ( ( N ^ 2 ) + ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
| 44 |
30
|
2timesd |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
| 45 |
44
|
oveq1d |
|- ( ph -> ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) = ( ( ( N ^ 2 ) + ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
| 46 |
43 45
|
eqtr4d |
|- ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) = ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
| 47 |
46
|
oveq1d |
|- ( ph -> ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) - ( Q x. G ) ) = ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
| 48 |
29 42 47
|
3eqtr2d |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
| 49 |
2 6 14
|
subdid |
|- ( ph -> ( Q x. ( G - N ) ) = ( ( Q x. G ) - ( Q x. N ) ) ) |
| 50 |
5
|
oveq2d |
|- ( ph -> ( Q x. ( T ^ 3 ) ) = ( Q x. ( G - N ) ) ) |
| 51 |
14
|
sqvald |
|- ( ph -> ( N ^ 2 ) = ( N x. N ) ) |
| 52 |
51
|
oveq2d |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( 2 x. ( N x. N ) ) ) |
| 53 |
17 14 14
|
mulassd |
|- ( ph -> ( ( 2 x. N ) x. N ) = ( 2 x. ( N x. N ) ) ) |
| 54 |
23
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) x. N ) = ( Q x. N ) ) |
| 55 |
52 53 54
|
3eqtr2d |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( Q x. N ) ) |
| 56 |
55
|
oveq2d |
|- ( ph -> ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) = ( ( Q x. G ) - ( Q x. N ) ) ) |
| 57 |
49 50 56
|
3eqtr4d |
|- ( ph -> ( Q x. ( T ^ 3 ) ) = ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) ) |
| 58 |
57
|
oveq1d |
|- ( ph -> ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) = ( ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) - ( M ^ 3 ) ) ) |
| 59 |
|
2cn |
|- 2 e. CC |
| 60 |
|
mulcl |
|- ( ( 2 e. CC /\ ( N ^ 2 ) e. CC ) -> ( 2 x. ( N ^ 2 ) ) e. CC ) |
| 61 |
59 30 60
|
sylancr |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) e. CC ) |
| 62 |
41 61 39
|
subsub4d |
|- ( ph -> ( ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) - ( M ^ 3 ) ) = ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) |
| 63 |
58 62
|
eqtrd |
|- ( ph -> ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) = ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) |
| 64 |
48 63
|
oveq12d |
|- ( ph -> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) ) |
| 65 |
61 39
|
addcld |
|- ( ph -> ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) e. CC ) |
| 66 |
|
npncan2 |
|- ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) e. CC /\ ( Q x. G ) e. CC ) -> ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) = 0 ) |
| 67 |
65 41 66
|
syl2anc |
|- ( ph -> ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) = 0 ) |
| 68 |
64 67
|
eqtrd |
|- ( ph -> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) |
| 69 |
1 2 3 4 5 6 7 8 9 10 4 10 11
|
dcubic1lem |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) |
| 70 |
68 69
|
mpbird |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |