Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|- ( ph -> P e. CC ) |
2 |
|
dcubic.d |
|- ( ph -> Q e. CC ) |
3 |
|
dcubic.x |
|- ( ph -> X e. CC ) |
4 |
|
dcubic.t |
|- ( ph -> T e. CC ) |
5 |
|
dcubic.3 |
|- ( ph -> ( T ^ 3 ) = ( G - N ) ) |
6 |
|
dcubic.g |
|- ( ph -> G e. CC ) |
7 |
|
dcubic.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
8 |
|
dcubic.m |
|- ( ph -> M = ( P / 3 ) ) |
9 |
|
dcubic.n |
|- ( ph -> N = ( Q / 2 ) ) |
10 |
|
dcubic.0 |
|- ( ph -> T =/= 0 ) |
11 |
|
dcubic1.x |
|- ( ph -> X = ( T - ( M / T ) ) ) |
12 |
5
|
oveq1d |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( G - N ) ^ 2 ) ) |
13 |
2
|
halfcld |
|- ( ph -> ( Q / 2 ) e. CC ) |
14 |
9 13
|
eqeltrd |
|- ( ph -> N e. CC ) |
15 |
|
binom2sub |
|- ( ( G e. CC /\ N e. CC ) -> ( ( G - N ) ^ 2 ) = ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) ) |
16 |
6 14 15
|
syl2anc |
|- ( ph -> ( ( G - N ) ^ 2 ) = ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) ) |
17 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
18 |
17 6 14
|
mul12d |
|- ( ph -> ( 2 x. ( G x. N ) ) = ( G x. ( 2 x. N ) ) ) |
19 |
9
|
oveq2d |
|- ( ph -> ( 2 x. N ) = ( 2 x. ( Q / 2 ) ) ) |
20 |
|
2ne0 |
|- 2 =/= 0 |
21 |
20
|
a1i |
|- ( ph -> 2 =/= 0 ) |
22 |
2 17 21
|
divcan2d |
|- ( ph -> ( 2 x. ( Q / 2 ) ) = Q ) |
23 |
19 22
|
eqtrd |
|- ( ph -> ( 2 x. N ) = Q ) |
24 |
23
|
oveq2d |
|- ( ph -> ( G x. ( 2 x. N ) ) = ( G x. Q ) ) |
25 |
6 2
|
mulcomd |
|- ( ph -> ( G x. Q ) = ( Q x. G ) ) |
26 |
18 24 25
|
3eqtrd |
|- ( ph -> ( 2 x. ( G x. N ) ) = ( Q x. G ) ) |
27 |
7 26
|
oveq12d |
|- ( ph -> ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) = ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
28 |
27
|
oveq1d |
|- ( ph -> ( ( ( G ^ 2 ) - ( 2 x. ( G x. N ) ) ) + ( N ^ 2 ) ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
29 |
12 16 28
|
3eqtrd |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
30 |
14
|
sqcld |
|- ( ph -> ( N ^ 2 ) e. CC ) |
31 |
|
3cn |
|- 3 e. CC |
32 |
31
|
a1i |
|- ( ph -> 3 e. CC ) |
33 |
|
3ne0 |
|- 3 =/= 0 |
34 |
33
|
a1i |
|- ( ph -> 3 =/= 0 ) |
35 |
1 32 34
|
divcld |
|- ( ph -> ( P / 3 ) e. CC ) |
36 |
8 35
|
eqeltrd |
|- ( ph -> M e. CC ) |
37 |
|
3nn0 |
|- 3 e. NN0 |
38 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
39 |
36 37 38
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
40 |
30 39
|
addcld |
|- ( ph -> ( ( N ^ 2 ) + ( M ^ 3 ) ) e. CC ) |
41 |
2 6
|
mulcld |
|- ( ph -> ( Q x. G ) e. CC ) |
42 |
40 30 41
|
addsubd |
|- ( ph -> ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) - ( Q x. G ) ) = ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( N ^ 2 ) ) ) |
43 |
30 39 30
|
add32d |
|- ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) = ( ( ( N ^ 2 ) + ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
44 |
30
|
2timesd |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) = ( ( ( N ^ 2 ) + ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
46 |
43 45
|
eqtr4d |
|- ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) = ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) |
47 |
46
|
oveq1d |
|- ( ph -> ( ( ( ( N ^ 2 ) + ( M ^ 3 ) ) + ( N ^ 2 ) ) - ( Q x. G ) ) = ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
48 |
29 42 47
|
3eqtr2d |
|- ( ph -> ( ( T ^ 3 ) ^ 2 ) = ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) ) |
49 |
2 6 14
|
subdid |
|- ( ph -> ( Q x. ( G - N ) ) = ( ( Q x. G ) - ( Q x. N ) ) ) |
50 |
5
|
oveq2d |
|- ( ph -> ( Q x. ( T ^ 3 ) ) = ( Q x. ( G - N ) ) ) |
51 |
14
|
sqvald |
|- ( ph -> ( N ^ 2 ) = ( N x. N ) ) |
52 |
51
|
oveq2d |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( 2 x. ( N x. N ) ) ) |
53 |
17 14 14
|
mulassd |
|- ( ph -> ( ( 2 x. N ) x. N ) = ( 2 x. ( N x. N ) ) ) |
54 |
23
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) x. N ) = ( Q x. N ) ) |
55 |
52 53 54
|
3eqtr2d |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) = ( Q x. N ) ) |
56 |
55
|
oveq2d |
|- ( ph -> ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) = ( ( Q x. G ) - ( Q x. N ) ) ) |
57 |
49 50 56
|
3eqtr4d |
|- ( ph -> ( Q x. ( T ^ 3 ) ) = ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) ) |
58 |
57
|
oveq1d |
|- ( ph -> ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) = ( ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) - ( M ^ 3 ) ) ) |
59 |
|
2cn |
|- 2 e. CC |
60 |
|
mulcl |
|- ( ( 2 e. CC /\ ( N ^ 2 ) e. CC ) -> ( 2 x. ( N ^ 2 ) ) e. CC ) |
61 |
59 30 60
|
sylancr |
|- ( ph -> ( 2 x. ( N ^ 2 ) ) e. CC ) |
62 |
41 61 39
|
subsub4d |
|- ( ph -> ( ( ( Q x. G ) - ( 2 x. ( N ^ 2 ) ) ) - ( M ^ 3 ) ) = ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) |
63 |
58 62
|
eqtrd |
|- ( ph -> ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) = ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) |
64 |
48 63
|
oveq12d |
|- ( ph -> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) ) |
65 |
61 39
|
addcld |
|- ( ph -> ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) e. CC ) |
66 |
|
npncan2 |
|- ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) e. CC /\ ( Q x. G ) e. CC ) -> ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) = 0 ) |
67 |
65 41 66
|
syl2anc |
|- ( ph -> ( ( ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) - ( Q x. G ) ) + ( ( Q x. G ) - ( ( 2 x. ( N ^ 2 ) ) + ( M ^ 3 ) ) ) ) = 0 ) |
68 |
64 67
|
eqtrd |
|- ( ph -> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) |
69 |
1 2 3 4 5 6 7 8 9 10 4 10 11
|
dcubic1lem |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( T ^ 3 ) ^ 2 ) + ( ( Q x. ( T ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) |
70 |
68 69
|
mpbird |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |