| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
|- ( ph -> P e. CC ) |
| 2 |
|
dcubic.d |
|- ( ph -> Q e. CC ) |
| 3 |
|
dcubic.x |
|- ( ph -> X e. CC ) |
| 4 |
|
dcubic.t |
|- ( ph -> T e. CC ) |
| 5 |
|
dcubic.3 |
|- ( ph -> ( T ^ 3 ) = ( G - N ) ) |
| 6 |
|
dcubic.g |
|- ( ph -> G e. CC ) |
| 7 |
|
dcubic.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
| 8 |
|
dcubic.m |
|- ( ph -> M = ( P / 3 ) ) |
| 9 |
|
dcubic.n |
|- ( ph -> N = ( Q / 2 ) ) |
| 10 |
|
dcubic.0 |
|- ( ph -> T =/= 0 ) |
| 11 |
|
dcubic2.u |
|- ( ph -> U e. CC ) |
| 12 |
|
dcubic2.z |
|- ( ph -> U =/= 0 ) |
| 13 |
|
dcubic2.2 |
|- ( ph -> X = ( U - ( M / U ) ) ) |
| 14 |
|
3nn0 |
|- 3 e. NN0 |
| 15 |
|
expcl |
|- ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) |
| 16 |
11 14 15
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. CC ) |
| 17 |
16
|
sqvald |
|- ( ph -> ( ( U ^ 3 ) ^ 2 ) = ( ( U ^ 3 ) x. ( U ^ 3 ) ) ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( ( U ^ 3 ) ^ 2 ) / ( U ^ 3 ) ) = ( ( ( U ^ 3 ) x. ( U ^ 3 ) ) / ( U ^ 3 ) ) ) |
| 19 |
|
3z |
|- 3 e. ZZ |
| 20 |
19
|
a1i |
|- ( ph -> 3 e. ZZ ) |
| 21 |
11 12 20
|
expne0d |
|- ( ph -> ( U ^ 3 ) =/= 0 ) |
| 22 |
16 16 21
|
divcan4d |
|- ( ph -> ( ( ( U ^ 3 ) x. ( U ^ 3 ) ) / ( U ^ 3 ) ) = ( U ^ 3 ) ) |
| 23 |
18 22
|
eqtr2d |
|- ( ph -> ( U ^ 3 ) = ( ( ( U ^ 3 ) ^ 2 ) / ( U ^ 3 ) ) ) |
| 24 |
|
3cn |
|- 3 e. CC |
| 25 |
24
|
a1i |
|- ( ph -> 3 e. CC ) |
| 26 |
|
3ne0 |
|- 3 =/= 0 |
| 27 |
26
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 28 |
1 25 27
|
divcld |
|- ( ph -> ( P / 3 ) e. CC ) |
| 29 |
8 28
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 30 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
| 31 |
29 14 30
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
| 32 |
31 16 21
|
divcld |
|- ( ph -> ( ( M ^ 3 ) / ( U ^ 3 ) ) e. CC ) |
| 33 |
2 32
|
negsubd |
|- ( ph -> ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( Q - ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 34 |
2 16 21
|
divcan4d |
|- ( ph -> ( ( Q x. ( U ^ 3 ) ) / ( U ^ 3 ) ) = Q ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( ( Q x. ( U ^ 3 ) ) / ( U ^ 3 ) ) - ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( Q - ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 36 |
33 35
|
eqtr4d |
|- ( ph -> ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( ( ( Q x. ( U ^ 3 ) ) / ( U ^ 3 ) ) - ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 37 |
1 3
|
mulcld |
|- ( ph -> ( P x. X ) e. CC ) |
| 38 |
37
|
negcld |
|- ( ph -> -u ( P x. X ) e. CC ) |
| 39 |
32
|
negcld |
|- ( ph -> -u ( ( M ^ 3 ) / ( U ^ 3 ) ) e. CC ) |
| 40 |
38 39 37 2
|
add42d |
|- ( ph -> ( ( -u ( P x. X ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) + ( ( P x. X ) + Q ) ) = ( ( -u ( P x. X ) + ( P x. X ) ) + ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 41 |
1 3
|
mulneg2d |
|- ( ph -> ( P x. -u X ) = -u ( P x. X ) ) |
| 42 |
13
|
negeqd |
|- ( ph -> -u X = -u ( U - ( M / U ) ) ) |
| 43 |
29 11 12
|
divcld |
|- ( ph -> ( M / U ) e. CC ) |
| 44 |
11 43
|
negsubdid |
|- ( ph -> -u ( U - ( M / U ) ) = ( -u U + ( M / U ) ) ) |
| 45 |
42 44
|
eqtrd |
|- ( ph -> -u X = ( -u U + ( M / U ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( P x. -u X ) = ( P x. ( -u U + ( M / U ) ) ) ) |
| 47 |
41 46
|
eqtr3d |
|- ( ph -> -u ( P x. X ) = ( P x. ( -u U + ( M / U ) ) ) ) |
| 48 |
11
|
negcld |
|- ( ph -> -u U e. CC ) |
| 49 |
1 48 43
|
adddid |
|- ( ph -> ( P x. ( -u U + ( M / U ) ) ) = ( ( P x. -u U ) + ( P x. ( M / U ) ) ) ) |
| 50 |
1 11
|
mulneg2d |
|- ( ph -> ( P x. -u U ) = -u ( P x. U ) ) |
| 51 |
50
|
oveq1d |
|- ( ph -> ( ( P x. -u U ) + ( P x. ( M / U ) ) ) = ( -u ( P x. U ) + ( P x. ( M / U ) ) ) ) |
| 52 |
47 49 51
|
3eqtrd |
|- ( ph -> -u ( P x. X ) = ( -u ( P x. U ) + ( P x. ( M / U ) ) ) ) |
| 53 |
52
|
oveq1d |
|- ( ph -> ( -u ( P x. X ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( ( -u ( P x. U ) + ( P x. ( M / U ) ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 54 |
1 11
|
mulcld |
|- ( ph -> ( P x. U ) e. CC ) |
| 55 |
54
|
negcld |
|- ( ph -> -u ( P x. U ) e. CC ) |
| 56 |
1 43
|
mulcld |
|- ( ph -> ( P x. ( M / U ) ) e. CC ) |
| 57 |
55 56 39
|
addassd |
|- ( ph -> ( ( -u ( P x. U ) + ( P x. ( M / U ) ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 58 |
53 57
|
eqtrd |
|- ( ph -> ( -u ( P x. X ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) = ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 59 |
58
|
oveq1d |
|- ( ph -> ( ( -u ( P x. X ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) + ( ( P x. X ) + Q ) ) = ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) ) |
| 60 |
38 37
|
addcomd |
|- ( ph -> ( -u ( P x. X ) + ( P x. X ) ) = ( ( P x. X ) + -u ( P x. X ) ) ) |
| 61 |
37
|
negidd |
|- ( ph -> ( ( P x. X ) + -u ( P x. X ) ) = 0 ) |
| 62 |
60 61
|
eqtrd |
|- ( ph -> ( -u ( P x. X ) + ( P x. X ) ) = 0 ) |
| 63 |
62
|
oveq1d |
|- ( ph -> ( ( -u ( P x. X ) + ( P x. X ) ) + ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) = ( 0 + ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 64 |
2 39
|
addcld |
|- ( ph -> ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) e. CC ) |
| 65 |
64
|
addlidd |
|- ( ph -> ( 0 + ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) = ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 66 |
63 65
|
eqtrd |
|- ( ph -> ( ( -u ( P x. X ) + ( P x. X ) ) + ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) = ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 67 |
40 59 66
|
3eqtr3d |
|- ( ph -> ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) = ( Q + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 68 |
2 16
|
mulcld |
|- ( ph -> ( Q x. ( U ^ 3 ) ) e. CC ) |
| 69 |
68 31 16 21
|
divsubdird |
|- ( ph -> ( ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) / ( U ^ 3 ) ) = ( ( ( Q x. ( U ^ 3 ) ) / ( U ^ 3 ) ) - ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 70 |
36 67 69
|
3eqtr4d |
|- ( ph -> ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) = ( ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) / ( U ^ 3 ) ) ) |
| 71 |
23 70
|
oveq12d |
|- ( ph -> ( ( U ^ 3 ) + ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) ) = ( ( ( ( U ^ 3 ) ^ 2 ) / ( U ^ 3 ) ) + ( ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) / ( U ^ 3 ) ) ) ) |
| 72 |
11 43
|
negsubd |
|- ( ph -> ( U + -u ( M / U ) ) = ( U - ( M / U ) ) ) |
| 73 |
13 72
|
eqtr4d |
|- ( ph -> X = ( U + -u ( M / U ) ) ) |
| 74 |
73
|
oveq1d |
|- ( ph -> ( X ^ 3 ) = ( ( U + -u ( M / U ) ) ^ 3 ) ) |
| 75 |
43
|
negcld |
|- ( ph -> -u ( M / U ) e. CC ) |
| 76 |
|
binom3 |
|- ( ( U e. CC /\ -u ( M / U ) e. CC ) -> ( ( U + -u ( M / U ) ) ^ 3 ) = ( ( ( U ^ 3 ) + ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) ) + ( ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) + ( -u ( M / U ) ^ 3 ) ) ) ) |
| 77 |
11 75 76
|
syl2anc |
|- ( ph -> ( ( U + -u ( M / U ) ) ^ 3 ) = ( ( ( U ^ 3 ) + ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) ) + ( ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) + ( -u ( M / U ) ^ 3 ) ) ) ) |
| 78 |
11
|
sqcld |
|- ( ph -> ( U ^ 2 ) e. CC ) |
| 79 |
78 43
|
mulneg2d |
|- ( ph -> ( ( U ^ 2 ) x. -u ( M / U ) ) = -u ( ( U ^ 2 ) x. ( M / U ) ) ) |
| 80 |
78 29 11 12
|
div12d |
|- ( ph -> ( ( U ^ 2 ) x. ( M / U ) ) = ( M x. ( ( U ^ 2 ) / U ) ) ) |
| 81 |
11
|
sqvald |
|- ( ph -> ( U ^ 2 ) = ( U x. U ) ) |
| 82 |
81
|
oveq1d |
|- ( ph -> ( ( U ^ 2 ) / U ) = ( ( U x. U ) / U ) ) |
| 83 |
11 11 12
|
divcan4d |
|- ( ph -> ( ( U x. U ) / U ) = U ) |
| 84 |
82 83
|
eqtrd |
|- ( ph -> ( ( U ^ 2 ) / U ) = U ) |
| 85 |
84
|
oveq2d |
|- ( ph -> ( M x. ( ( U ^ 2 ) / U ) ) = ( M x. U ) ) |
| 86 |
80 85
|
eqtrd |
|- ( ph -> ( ( U ^ 2 ) x. ( M / U ) ) = ( M x. U ) ) |
| 87 |
86
|
negeqd |
|- ( ph -> -u ( ( U ^ 2 ) x. ( M / U ) ) = -u ( M x. U ) ) |
| 88 |
79 87
|
eqtrd |
|- ( ph -> ( ( U ^ 2 ) x. -u ( M / U ) ) = -u ( M x. U ) ) |
| 89 |
88
|
oveq2d |
|- ( ph -> ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) = ( 3 x. -u ( M x. U ) ) ) |
| 90 |
29 11
|
mulcld |
|- ( ph -> ( M x. U ) e. CC ) |
| 91 |
25 90
|
mulneg2d |
|- ( ph -> ( 3 x. -u ( M x. U ) ) = -u ( 3 x. ( M x. U ) ) ) |
| 92 |
25 29 11
|
mulassd |
|- ( ph -> ( ( 3 x. M ) x. U ) = ( 3 x. ( M x. U ) ) ) |
| 93 |
8
|
oveq2d |
|- ( ph -> ( 3 x. M ) = ( 3 x. ( P / 3 ) ) ) |
| 94 |
1 25 27
|
divcan2d |
|- ( ph -> ( 3 x. ( P / 3 ) ) = P ) |
| 95 |
93 94
|
eqtrd |
|- ( ph -> ( 3 x. M ) = P ) |
| 96 |
95
|
oveq1d |
|- ( ph -> ( ( 3 x. M ) x. U ) = ( P x. U ) ) |
| 97 |
92 96
|
eqtr3d |
|- ( ph -> ( 3 x. ( M x. U ) ) = ( P x. U ) ) |
| 98 |
97
|
negeqd |
|- ( ph -> -u ( 3 x. ( M x. U ) ) = -u ( P x. U ) ) |
| 99 |
89 91 98
|
3eqtrd |
|- ( ph -> ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) = -u ( P x. U ) ) |
| 100 |
99
|
oveq2d |
|- ( ph -> ( ( U ^ 3 ) + ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) ) = ( ( U ^ 3 ) + -u ( P x. U ) ) ) |
| 101 |
|
sqneg |
|- ( ( M / U ) e. CC -> ( -u ( M / U ) ^ 2 ) = ( ( M / U ) ^ 2 ) ) |
| 102 |
43 101
|
syl |
|- ( ph -> ( -u ( M / U ) ^ 2 ) = ( ( M / U ) ^ 2 ) ) |
| 103 |
43
|
sqvald |
|- ( ph -> ( ( M / U ) ^ 2 ) = ( ( M / U ) x. ( M / U ) ) ) |
| 104 |
102 103
|
eqtrd |
|- ( ph -> ( -u ( M / U ) ^ 2 ) = ( ( M / U ) x. ( M / U ) ) ) |
| 105 |
104
|
oveq2d |
|- ( ph -> ( U x. ( -u ( M / U ) ^ 2 ) ) = ( U x. ( ( M / U ) x. ( M / U ) ) ) ) |
| 106 |
11 43 43
|
mulassd |
|- ( ph -> ( ( U x. ( M / U ) ) x. ( M / U ) ) = ( U x. ( ( M / U ) x. ( M / U ) ) ) ) |
| 107 |
29 11 12
|
divcan2d |
|- ( ph -> ( U x. ( M / U ) ) = M ) |
| 108 |
107
|
oveq1d |
|- ( ph -> ( ( U x. ( M / U ) ) x. ( M / U ) ) = ( M x. ( M / U ) ) ) |
| 109 |
105 106 108
|
3eqtr2d |
|- ( ph -> ( U x. ( -u ( M / U ) ^ 2 ) ) = ( M x. ( M / U ) ) ) |
| 110 |
109
|
oveq2d |
|- ( ph -> ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) = ( 3 x. ( M x. ( M / U ) ) ) ) |
| 111 |
25 29 43
|
mulassd |
|- ( ph -> ( ( 3 x. M ) x. ( M / U ) ) = ( 3 x. ( M x. ( M / U ) ) ) ) |
| 112 |
95
|
oveq1d |
|- ( ph -> ( ( 3 x. M ) x. ( M / U ) ) = ( P x. ( M / U ) ) ) |
| 113 |
110 111 112
|
3eqtr2d |
|- ( ph -> ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) = ( P x. ( M / U ) ) ) |
| 114 |
|
3nn |
|- 3 e. NN |
| 115 |
114
|
a1i |
|- ( ph -> 3 e. NN ) |
| 116 |
|
n2dvds3 |
|- -. 2 || 3 |
| 117 |
116
|
a1i |
|- ( ph -> -. 2 || 3 ) |
| 118 |
|
oexpneg |
|- ( ( ( M / U ) e. CC /\ 3 e. NN /\ -. 2 || 3 ) -> ( -u ( M / U ) ^ 3 ) = -u ( ( M / U ) ^ 3 ) ) |
| 119 |
43 115 117 118
|
syl3anc |
|- ( ph -> ( -u ( M / U ) ^ 3 ) = -u ( ( M / U ) ^ 3 ) ) |
| 120 |
14
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 121 |
29 11 12 120
|
expdivd |
|- ( ph -> ( ( M / U ) ^ 3 ) = ( ( M ^ 3 ) / ( U ^ 3 ) ) ) |
| 122 |
121
|
negeqd |
|- ( ph -> -u ( ( M / U ) ^ 3 ) = -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) |
| 123 |
119 122
|
eqtrd |
|- ( ph -> ( -u ( M / U ) ^ 3 ) = -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) |
| 124 |
113 123
|
oveq12d |
|- ( ph -> ( ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) + ( -u ( M / U ) ^ 3 ) ) = ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) |
| 125 |
100 124
|
oveq12d |
|- ( ph -> ( ( ( U ^ 3 ) + ( 3 x. ( ( U ^ 2 ) x. -u ( M / U ) ) ) ) + ( ( 3 x. ( U x. ( -u ( M / U ) ^ 2 ) ) ) + ( -u ( M / U ) ^ 3 ) ) ) = ( ( ( U ^ 3 ) + -u ( P x. U ) ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 126 |
74 77 125
|
3eqtrd |
|- ( ph -> ( X ^ 3 ) = ( ( ( U ^ 3 ) + -u ( P x. U ) ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) |
| 127 |
56 39
|
addcld |
|- ( ph -> ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) e. CC ) |
| 128 |
16 55 127
|
addassd |
|- ( ph -> ( ( ( U ^ 3 ) + -u ( P x. U ) ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) = ( ( U ^ 3 ) + ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) ) |
| 129 |
126 128
|
eqtrd |
|- ( ph -> ( X ^ 3 ) = ( ( U ^ 3 ) + ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) ) |
| 130 |
129
|
oveq1d |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = ( ( ( U ^ 3 ) + ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) + ( ( P x. X ) + Q ) ) ) |
| 131 |
55 127
|
addcld |
|- ( ph -> ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) e. CC ) |
| 132 |
37 2
|
addcld |
|- ( ph -> ( ( P x. X ) + Q ) e. CC ) |
| 133 |
16 131 132
|
addassd |
|- ( ph -> ( ( ( U ^ 3 ) + ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) ) + ( ( P x. X ) + Q ) ) = ( ( U ^ 3 ) + ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) ) ) |
| 134 |
130 133
|
eqtrd |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = ( ( U ^ 3 ) + ( ( -u ( P x. U ) + ( ( P x. ( M / U ) ) + -u ( ( M ^ 3 ) / ( U ^ 3 ) ) ) ) + ( ( P x. X ) + Q ) ) ) ) |
| 135 |
16
|
sqcld |
|- ( ph -> ( ( U ^ 3 ) ^ 2 ) e. CC ) |
| 136 |
68 31
|
subcld |
|- ( ph -> ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) e. CC ) |
| 137 |
135 136 16 21
|
divdird |
|- ( ph -> ( ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) / ( U ^ 3 ) ) = ( ( ( ( U ^ 3 ) ^ 2 ) / ( U ^ 3 ) ) + ( ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) / ( U ^ 3 ) ) ) ) |
| 138 |
71 134 137
|
3eqtr4d |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = ( ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) / ( U ^ 3 ) ) ) |
| 139 |
138
|
eqeq1d |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) / ( U ^ 3 ) ) = 0 ) ) |
| 140 |
135 136
|
addcld |
|- ( ph -> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) e. CC ) |
| 141 |
140 16 21
|
diveq0ad |
|- ( ph -> ( ( ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) / ( U ^ 3 ) ) = 0 <-> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) |
| 142 |
139 141
|
bitrd |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) |