| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dcubic.c |  |-  ( ph -> P e. CC ) | 
						
							| 2 |  | dcubic.d |  |-  ( ph -> Q e. CC ) | 
						
							| 3 |  | dcubic.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | dcubic.t |  |-  ( ph -> T e. CC ) | 
						
							| 5 |  | dcubic.3 |  |-  ( ph -> ( T ^ 3 ) = ( G - N ) ) | 
						
							| 6 |  | dcubic.g |  |-  ( ph -> G e. CC ) | 
						
							| 7 |  | dcubic.2 |  |-  ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) | 
						
							| 8 |  | dcubic.m |  |-  ( ph -> M = ( P / 3 ) ) | 
						
							| 9 |  | dcubic.n |  |-  ( ph -> N = ( Q / 2 ) ) | 
						
							| 10 |  | dcubic.0 |  |-  ( ph -> T =/= 0 ) | 
						
							| 11 |  | dcubic2.u |  |-  ( ph -> U e. CC ) | 
						
							| 12 |  | dcubic2.z |  |-  ( ph -> U =/= 0 ) | 
						
							| 13 |  | dcubic2.2 |  |-  ( ph -> X = ( U - ( M / U ) ) ) | 
						
							| 14 |  | dcubic2.x |  |-  ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) | 
						
							| 15 | 11 4 10 | divcld |  |-  ( ph -> ( U / T ) e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( U / T ) e. CC ) | 
						
							| 17 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 18 | 17 | a1i |  |-  ( ph -> 3 e. NN0 ) | 
						
							| 19 | 11 4 10 18 | expdivd |  |-  ( ph -> ( ( U / T ) ^ 3 ) = ( ( U ^ 3 ) / ( T ^ 3 ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U / T ) ^ 3 ) = ( ( U ^ 3 ) / ( T ^ 3 ) ) ) | 
						
							| 21 |  | oveq1 |  |-  ( ( U ^ 3 ) = ( G - N ) -> ( ( U ^ 3 ) / ( T ^ 3 ) ) = ( ( G - N ) / ( T ^ 3 ) ) ) | 
						
							| 22 | 5 | oveq1d |  |-  ( ph -> ( ( T ^ 3 ) / ( T ^ 3 ) ) = ( ( G - N ) / ( T ^ 3 ) ) ) | 
						
							| 23 |  | expcl |  |-  ( ( T e. CC /\ 3 e. NN0 ) -> ( T ^ 3 ) e. CC ) | 
						
							| 24 | 4 17 23 | sylancl |  |-  ( ph -> ( T ^ 3 ) e. CC ) | 
						
							| 25 |  | 3z |  |-  3 e. ZZ | 
						
							| 26 | 25 | a1i |  |-  ( ph -> 3 e. ZZ ) | 
						
							| 27 | 4 10 26 | expne0d |  |-  ( ph -> ( T ^ 3 ) =/= 0 ) | 
						
							| 28 | 24 27 | dividd |  |-  ( ph -> ( ( T ^ 3 ) / ( T ^ 3 ) ) = 1 ) | 
						
							| 29 | 22 28 | eqtr3d |  |-  ( ph -> ( ( G - N ) / ( T ^ 3 ) ) = 1 ) | 
						
							| 30 | 21 29 | sylan9eqr |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U ^ 3 ) / ( T ^ 3 ) ) = 1 ) | 
						
							| 31 | 20 30 | eqtrd |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U / T ) ^ 3 ) = 1 ) | 
						
							| 32 | 11 4 10 | divcan1d |  |-  ( ph -> ( ( U / T ) x. T ) = U ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ph -> ( M / ( ( U / T ) x. T ) ) = ( M / U ) ) | 
						
							| 34 | 32 33 | oveq12d |  |-  ( ph -> ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) = ( U - ( M / U ) ) ) | 
						
							| 35 | 13 34 | eqtr4d |  |-  ( ph -> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) | 
						
							| 37 |  | oveq1 |  |-  ( r = ( U / T ) -> ( r ^ 3 ) = ( ( U / T ) ^ 3 ) ) | 
						
							| 38 | 37 | eqeq1d |  |-  ( r = ( U / T ) -> ( ( r ^ 3 ) = 1 <-> ( ( U / T ) ^ 3 ) = 1 ) ) | 
						
							| 39 |  | oveq1 |  |-  ( r = ( U / T ) -> ( r x. T ) = ( ( U / T ) x. T ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( r = ( U / T ) -> ( M / ( r x. T ) ) = ( M / ( ( U / T ) x. T ) ) ) | 
						
							| 41 | 39 40 | oveq12d |  |-  ( r = ( U / T ) -> ( ( r x. T ) - ( M / ( r x. T ) ) ) = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) | 
						
							| 42 | 41 | eqeq2d |  |-  ( r = ( U / T ) -> ( X = ( ( r x. T ) - ( M / ( r x. T ) ) ) <-> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) | 
						
							| 43 | 38 42 | anbi12d |  |-  ( r = ( U / T ) -> ( ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) <-> ( ( ( U / T ) ^ 3 ) = 1 /\ X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) ) | 
						
							| 44 | 43 | rspcev |  |-  ( ( ( U / T ) e. CC /\ ( ( ( U / T ) ^ 3 ) = 1 /\ X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) | 
						
							| 45 | 16 31 36 44 | syl12anc |  |-  ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) | 
						
							| 46 |  | 3cn |  |-  3 e. CC | 
						
							| 47 | 46 | a1i |  |-  ( ph -> 3 e. CC ) | 
						
							| 48 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 49 | 48 | a1i |  |-  ( ph -> 3 =/= 0 ) | 
						
							| 50 | 1 47 49 | divcld |  |-  ( ph -> ( P / 3 ) e. CC ) | 
						
							| 51 | 8 50 | eqeltrd |  |-  ( ph -> M e. CC ) | 
						
							| 52 | 51 11 12 | divcld |  |-  ( ph -> ( M / U ) e. CC ) | 
						
							| 53 | 52 | negcld |  |-  ( ph -> -u ( M / U ) e. CC ) | 
						
							| 54 | 53 4 10 | divcld |  |-  ( ph -> ( -u ( M / U ) / T ) e. CC ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( M / U ) / T ) e. CC ) | 
						
							| 56 | 53 4 10 18 | expdivd |  |-  ( ph -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( ( -u ( M / U ) ^ 3 ) / ( T ^ 3 ) ) ) | 
						
							| 57 | 51 11 12 | divnegd |  |-  ( ph -> -u ( M / U ) = ( -u M / U ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ph -> ( -u ( M / U ) ^ 3 ) = ( ( -u M / U ) ^ 3 ) ) | 
						
							| 59 | 51 | negcld |  |-  ( ph -> -u M e. CC ) | 
						
							| 60 | 59 11 12 18 | expdivd |  |-  ( ph -> ( ( -u M / U ) ^ 3 ) = ( ( -u M ^ 3 ) / ( U ^ 3 ) ) ) | 
						
							| 61 | 5 | oveq2d |  |-  ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( ( G + N ) x. ( G - N ) ) ) | 
						
							| 62 | 2 | halfcld |  |-  ( ph -> ( Q / 2 ) e. CC ) | 
						
							| 63 | 9 62 | eqeltrd |  |-  ( ph -> N e. CC ) | 
						
							| 64 |  | subsq |  |-  ( ( G e. CC /\ N e. CC ) -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( G + N ) x. ( G - N ) ) ) | 
						
							| 65 | 6 63 64 | syl2anc |  |-  ( ph -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( G + N ) x. ( G - N ) ) ) | 
						
							| 66 | 61 65 | eqtr4d |  |-  ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( ( G ^ 2 ) - ( N ^ 2 ) ) ) | 
						
							| 67 | 7 | oveq1d |  |-  ( ph -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( N ^ 2 ) ) ) | 
						
							| 68 | 63 | sqcld |  |-  ( ph -> ( N ^ 2 ) e. CC ) | 
						
							| 69 |  | expcl |  |-  ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) | 
						
							| 70 | 51 17 69 | sylancl |  |-  ( ph -> ( M ^ 3 ) e. CC ) | 
						
							| 71 | 68 70 | pncan2d |  |-  ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( N ^ 2 ) ) = ( M ^ 3 ) ) | 
						
							| 72 | 66 67 71 | 3eqtrd |  |-  ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( M ^ 3 ) ) | 
						
							| 73 | 72 | negeqd |  |-  ( ph -> -u ( ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) | 
						
							| 74 | 6 63 | addcld |  |-  ( ph -> ( G + N ) e. CC ) | 
						
							| 75 | 74 24 | mulneg1d |  |-  ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( ( G + N ) x. ( T ^ 3 ) ) ) | 
						
							| 76 |  | 3nn |  |-  3 e. NN | 
						
							| 77 | 76 | a1i |  |-  ( ph -> 3 e. NN ) | 
						
							| 78 |  | n2dvds3 |  |-  -. 2 || 3 | 
						
							| 79 | 78 | a1i |  |-  ( ph -> -. 2 || 3 ) | 
						
							| 80 |  | oexpneg |  |-  ( ( M e. CC /\ 3 e. NN /\ -. 2 || 3 ) -> ( -u M ^ 3 ) = -u ( M ^ 3 ) ) | 
						
							| 81 | 51 77 79 80 | syl3anc |  |-  ( ph -> ( -u M ^ 3 ) = -u ( M ^ 3 ) ) | 
						
							| 82 | 73 75 81 | 3eqtr4d |  |-  ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = ( -u M ^ 3 ) ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ph -> ( ( -u ( G + N ) x. ( T ^ 3 ) ) / ( U ^ 3 ) ) = ( ( -u M ^ 3 ) / ( U ^ 3 ) ) ) | 
						
							| 84 | 74 | negcld |  |-  ( ph -> -u ( G + N ) e. CC ) | 
						
							| 85 |  | expcl |  |-  ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) | 
						
							| 86 | 11 17 85 | sylancl |  |-  ( ph -> ( U ^ 3 ) e. CC ) | 
						
							| 87 | 11 12 26 | expne0d |  |-  ( ph -> ( U ^ 3 ) =/= 0 ) | 
						
							| 88 | 84 24 86 87 | div23d |  |-  ( ph -> ( ( -u ( G + N ) x. ( T ^ 3 ) ) / ( U ^ 3 ) ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) | 
						
							| 89 | 83 88 | eqtr3d |  |-  ( ph -> ( ( -u M ^ 3 ) / ( U ^ 3 ) ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) | 
						
							| 90 | 58 60 89 | 3eqtrd |  |-  ( ph -> ( -u ( M / U ) ^ 3 ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) | 
						
							| 91 | 90 | oveq1d |  |-  ( ph -> ( ( -u ( M / U ) ^ 3 ) / ( T ^ 3 ) ) = ( ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) / ( T ^ 3 ) ) ) | 
						
							| 92 | 84 86 87 | divcld |  |-  ( ph -> ( -u ( G + N ) / ( U ^ 3 ) ) e. CC ) | 
						
							| 93 | 92 24 27 | divcan4d |  |-  ( ph -> ( ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) / ( T ^ 3 ) ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) | 
						
							| 94 | 56 91 93 | 3eqtrd |  |-  ( ph -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) | 
						
							| 96 |  | oveq1 |  |-  ( ( U ^ 3 ) = -u ( G + N ) -> ( ( U ^ 3 ) / ( U ^ 3 ) ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) | 
						
							| 97 | 96 | eqcomd |  |-  ( ( U ^ 3 ) = -u ( G + N ) -> ( -u ( G + N ) / ( U ^ 3 ) ) = ( ( U ^ 3 ) / ( U ^ 3 ) ) ) | 
						
							| 98 | 86 87 | dividd |  |-  ( ph -> ( ( U ^ 3 ) / ( U ^ 3 ) ) = 1 ) | 
						
							| 99 | 97 98 | sylan9eqr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) / ( U ^ 3 ) ) = 1 ) | 
						
							| 100 | 95 99 | eqtrd |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) ^ 3 ) = 1 ) | 
						
							| 101 | 52 11 | neg2subd |  |-  ( ph -> ( -u ( M / U ) - -u U ) = ( U - ( M / U ) ) ) | 
						
							| 102 | 13 101 | eqtr4d |  |-  ( ph -> X = ( -u ( M / U ) - -u U ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> X = ( -u ( M / U ) - -u U ) ) | 
						
							| 104 | 53 4 10 | divcan1d |  |-  ( ph -> ( ( -u ( M / U ) / T ) x. T ) = -u ( M / U ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) x. T ) = -u ( M / U ) ) | 
						
							| 106 | 51 11 12 | divneg2d |  |-  ( ph -> -u ( M / U ) = ( M / -u U ) ) | 
						
							| 107 | 104 106 | eqtrd |  |-  ( ph -> ( ( -u ( M / U ) / T ) x. T ) = ( M / -u U ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) x. T ) = ( M / -u U ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( ( -u ( M / U ) / T ) x. T ) ) = ( M / ( M / -u U ) ) ) | 
						
							| 110 | 51 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> M e. CC ) | 
						
							| 111 | 11 | negcld |  |-  ( ph -> -u U e. CC ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u U e. CC ) | 
						
							| 113 | 75 73 | eqtrd |  |-  ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) | 
						
							| 115 | 84 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( G + N ) e. CC ) | 
						
							| 116 | 24 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( T ^ 3 ) e. CC ) | 
						
							| 117 |  | simpr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( U ^ 3 ) = -u ( G + N ) ) | 
						
							| 118 | 87 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( U ^ 3 ) =/= 0 ) | 
						
							| 119 | 117 118 | eqnetrrd |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( G + N ) =/= 0 ) | 
						
							| 120 | 27 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( T ^ 3 ) =/= 0 ) | 
						
							| 121 | 115 116 119 120 | mulne0d |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) x. ( T ^ 3 ) ) =/= 0 ) | 
						
							| 122 | 114 121 | eqnetrrd |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( M ^ 3 ) =/= 0 ) | 
						
							| 123 |  | oveq1 |  |-  ( M = 0 -> ( M ^ 3 ) = ( 0 ^ 3 ) ) | 
						
							| 124 |  | 0exp |  |-  ( 3 e. NN -> ( 0 ^ 3 ) = 0 ) | 
						
							| 125 | 76 124 | ax-mp |  |-  ( 0 ^ 3 ) = 0 | 
						
							| 126 | 123 125 | eqtrdi |  |-  ( M = 0 -> ( M ^ 3 ) = 0 ) | 
						
							| 127 | 126 | negeqd |  |-  ( M = 0 -> -u ( M ^ 3 ) = -u 0 ) | 
						
							| 128 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 129 | 127 128 | eqtrdi |  |-  ( M = 0 -> -u ( M ^ 3 ) = 0 ) | 
						
							| 130 | 129 | necon3i |  |-  ( -u ( M ^ 3 ) =/= 0 -> M =/= 0 ) | 
						
							| 131 | 122 130 | syl |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> M =/= 0 ) | 
						
							| 132 | 11 12 | negne0d |  |-  ( ph -> -u U =/= 0 ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u U =/= 0 ) | 
						
							| 134 | 110 112 131 133 | ddcand |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( M / -u U ) ) = -u U ) | 
						
							| 135 | 109 134 | eqtrd |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( ( -u ( M / U ) / T ) x. T ) ) = -u U ) | 
						
							| 136 | 105 135 | oveq12d |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) = ( -u ( M / U ) - -u U ) ) | 
						
							| 137 | 103 136 | eqtr4d |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) | 
						
							| 138 |  | oveq1 |  |-  ( r = ( -u ( M / U ) / T ) -> ( r ^ 3 ) = ( ( -u ( M / U ) / T ) ^ 3 ) ) | 
						
							| 139 | 138 | eqeq1d |  |-  ( r = ( -u ( M / U ) / T ) -> ( ( r ^ 3 ) = 1 <-> ( ( -u ( M / U ) / T ) ^ 3 ) = 1 ) ) | 
						
							| 140 |  | oveq1 |  |-  ( r = ( -u ( M / U ) / T ) -> ( r x. T ) = ( ( -u ( M / U ) / T ) x. T ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( r = ( -u ( M / U ) / T ) -> ( M / ( r x. T ) ) = ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) | 
						
							| 142 | 140 141 | oveq12d |  |-  ( r = ( -u ( M / U ) / T ) -> ( ( r x. T ) - ( M / ( r x. T ) ) ) = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) | 
						
							| 143 | 142 | eqeq2d |  |-  ( r = ( -u ( M / U ) / T ) -> ( X = ( ( r x. T ) - ( M / ( r x. T ) ) ) <-> X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) | 
						
							| 144 | 139 143 | anbi12d |  |-  ( r = ( -u ( M / U ) / T ) -> ( ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) <-> ( ( ( -u ( M / U ) / T ) ^ 3 ) = 1 /\ X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) ) | 
						
							| 145 | 144 | rspcev |  |-  ( ( ( -u ( M / U ) / T ) e. CC /\ ( ( ( -u ( M / U ) / T ) ^ 3 ) = 1 /\ X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) | 
						
							| 146 | 55 100 137 145 | syl12anc |  |-  ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) | 
						
							| 147 | 86 | sqcld |  |-  ( ph -> ( ( U ^ 3 ) ^ 2 ) e. CC ) | 
						
							| 148 | 147 | mullidd |  |-  ( ph -> ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) = ( ( U ^ 3 ) ^ 2 ) ) | 
						
							| 149 | 2 86 | mulcld |  |-  ( ph -> ( Q x. ( U ^ 3 ) ) e. CC ) | 
						
							| 150 | 149 70 | negsubd |  |-  ( ph -> ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) = ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) | 
						
							| 151 | 148 150 | oveq12d |  |-  ( ph -> ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) ) | 
						
							| 152 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | dcubic1lem |  |-  ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) | 
						
							| 153 | 14 152 | mpbid |  |-  ( ph -> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) | 
						
							| 154 | 151 153 | eqtrd |  |-  ( ph -> ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = 0 ) | 
						
							| 155 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 156 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 157 | 156 | a1i |  |-  ( ph -> 1 =/= 0 ) | 
						
							| 158 | 70 | negcld |  |-  ( ph -> -u ( M ^ 3 ) e. CC ) | 
						
							| 159 |  | 2cn |  |-  2 e. CC | 
						
							| 160 |  | mulcl |  |-  ( ( 2 e. CC /\ G e. CC ) -> ( 2 x. G ) e. CC ) | 
						
							| 161 | 159 6 160 | sylancr |  |-  ( ph -> ( 2 x. G ) e. CC ) | 
						
							| 162 |  | sqmul |  |-  ( ( 2 e. CC /\ G e. CC ) -> ( ( 2 x. G ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) ) | 
						
							| 163 | 159 6 162 | sylancr |  |-  ( ph -> ( ( 2 x. G ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) ) | 
						
							| 164 | 7 | oveq2d |  |-  ( ph -> ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) = ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) ) | 
						
							| 165 | 159 | sqcli |  |-  ( 2 ^ 2 ) e. CC | 
						
							| 166 |  | mulcl |  |-  ( ( ( 2 ^ 2 ) e. CC /\ ( N ^ 2 ) e. CC ) -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) e. CC ) | 
						
							| 167 | 165 68 166 | sylancr |  |-  ( ph -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) e. CC ) | 
						
							| 168 |  | mulcl |  |-  ( ( ( 2 ^ 2 ) e. CC /\ ( M ^ 3 ) e. CC ) -> ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) e. CC ) | 
						
							| 169 | 165 70 168 | sylancr |  |-  ( ph -> ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) e. CC ) | 
						
							| 170 | 167 169 | subnegd |  |-  ( ph -> ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) - -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) + ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) | 
						
							| 171 | 9 | oveq2d |  |-  ( ph -> ( 2 x. N ) = ( 2 x. ( Q / 2 ) ) ) | 
						
							| 172 | 159 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 173 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 174 | 173 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 175 | 2 172 174 | divcan2d |  |-  ( ph -> ( 2 x. ( Q / 2 ) ) = Q ) | 
						
							| 176 | 171 175 | eqtrd |  |-  ( ph -> ( 2 x. N ) = Q ) | 
						
							| 177 | 176 | oveq1d |  |-  ( ph -> ( ( 2 x. N ) ^ 2 ) = ( Q ^ 2 ) ) | 
						
							| 178 |  | sqmul |  |-  ( ( 2 e. CC /\ N e. CC ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) | 
						
							| 179 | 159 63 178 | sylancr |  |-  ( ph -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) | 
						
							| 180 | 177 179 | eqtr3d |  |-  ( ph -> ( Q ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) | 
						
							| 181 | 158 | mullidd |  |-  ( ph -> ( 1 x. -u ( M ^ 3 ) ) = -u ( M ^ 3 ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = ( 4 x. -u ( M ^ 3 ) ) ) | 
						
							| 183 |  | 4cn |  |-  4 e. CC | 
						
							| 184 |  | mulneg2 |  |-  ( ( 4 e. CC /\ ( M ^ 3 ) e. CC ) -> ( 4 x. -u ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) ) | 
						
							| 185 | 183 70 184 | sylancr |  |-  ( ph -> ( 4 x. -u ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) ) | 
						
							| 186 | 182 185 | eqtrd |  |-  ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = -u ( 4 x. ( M ^ 3 ) ) ) | 
						
							| 187 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 188 | 187 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) = ( 4 x. ( M ^ 3 ) ) | 
						
							| 189 | 188 | negeqi |  |-  -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) | 
						
							| 190 | 186 189 | eqtr4di |  |-  ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) | 
						
							| 191 | 180 190 | oveq12d |  |-  ( ph -> ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) - -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) | 
						
							| 192 | 165 | a1i |  |-  ( ph -> ( 2 ^ 2 ) e. CC ) | 
						
							| 193 | 192 68 70 | adddid |  |-  ( ph -> ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) + ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) | 
						
							| 194 | 170 191 193 | 3eqtr4rd |  |-  ( ph -> ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) = ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) ) | 
						
							| 195 | 163 164 194 | 3eqtrd |  |-  ( ph -> ( ( 2 x. G ) ^ 2 ) = ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) ) | 
						
							| 196 | 155 157 2 158 86 161 195 | quad2 |  |-  ( ph -> ( ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = 0 <-> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) ) ) | 
						
							| 197 | 154 196 | mpbid |  |-  ( ph -> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) ) | 
						
							| 198 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 199 | 198 | oveq2i |  |-  ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( ( -u Q + ( 2 x. G ) ) / 2 ) | 
						
							| 200 | 2 | negcld |  |-  ( ph -> -u Q e. CC ) | 
						
							| 201 | 200 161 172 174 | divdird |  |-  ( ph -> ( ( -u Q + ( 2 x. G ) ) / 2 ) = ( ( -u Q / 2 ) + ( ( 2 x. G ) / 2 ) ) ) | 
						
							| 202 | 9 | negeqd |  |-  ( ph -> -u N = -u ( Q / 2 ) ) | 
						
							| 203 | 2 172 174 | divnegd |  |-  ( ph -> -u ( Q / 2 ) = ( -u Q / 2 ) ) | 
						
							| 204 | 202 203 | eqtr2d |  |-  ( ph -> ( -u Q / 2 ) = -u N ) | 
						
							| 205 | 6 172 174 | divcan3d |  |-  ( ph -> ( ( 2 x. G ) / 2 ) = G ) | 
						
							| 206 | 204 205 | oveq12d |  |-  ( ph -> ( ( -u Q / 2 ) + ( ( 2 x. G ) / 2 ) ) = ( -u N + G ) ) | 
						
							| 207 | 63 | negcld |  |-  ( ph -> -u N e. CC ) | 
						
							| 208 | 207 6 | addcomd |  |-  ( ph -> ( -u N + G ) = ( G + -u N ) ) | 
						
							| 209 | 6 63 | negsubd |  |-  ( ph -> ( G + -u N ) = ( G - N ) ) | 
						
							| 210 | 208 209 | eqtrd |  |-  ( ph -> ( -u N + G ) = ( G - N ) ) | 
						
							| 211 | 201 206 210 | 3eqtrd |  |-  ( ph -> ( ( -u Q + ( 2 x. G ) ) / 2 ) = ( G - N ) ) | 
						
							| 212 | 199 211 | eqtrid |  |-  ( ph -> ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( G - N ) ) | 
						
							| 213 | 212 | eqeq2d |  |-  ( ph -> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) <-> ( U ^ 3 ) = ( G - N ) ) ) | 
						
							| 214 | 198 | oveq2i |  |-  ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( ( -u Q - ( 2 x. G ) ) / 2 ) | 
						
							| 215 | 204 205 | oveq12d |  |-  ( ph -> ( ( -u Q / 2 ) - ( ( 2 x. G ) / 2 ) ) = ( -u N - G ) ) | 
						
							| 216 | 200 161 172 174 | divsubdird |  |-  ( ph -> ( ( -u Q - ( 2 x. G ) ) / 2 ) = ( ( -u Q / 2 ) - ( ( 2 x. G ) / 2 ) ) ) | 
						
							| 217 | 6 63 | addcomd |  |-  ( ph -> ( G + N ) = ( N + G ) ) | 
						
							| 218 | 217 | negeqd |  |-  ( ph -> -u ( G + N ) = -u ( N + G ) ) | 
						
							| 219 | 63 6 | negdi2d |  |-  ( ph -> -u ( N + G ) = ( -u N - G ) ) | 
						
							| 220 | 218 219 | eqtrd |  |-  ( ph -> -u ( G + N ) = ( -u N - G ) ) | 
						
							| 221 | 215 216 220 | 3eqtr4d |  |-  ( ph -> ( ( -u Q - ( 2 x. G ) ) / 2 ) = -u ( G + N ) ) | 
						
							| 222 | 214 221 | eqtrid |  |-  ( ph -> ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) = -u ( G + N ) ) | 
						
							| 223 | 222 | eqeq2d |  |-  ( ph -> ( ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) <-> ( U ^ 3 ) = -u ( G + N ) ) ) | 
						
							| 224 | 213 223 | orbi12d |  |-  ( ph -> ( ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) <-> ( ( U ^ 3 ) = ( G - N ) \/ ( U ^ 3 ) = -u ( G + N ) ) ) ) | 
						
							| 225 | 197 224 | mpbid |  |-  ( ph -> ( ( U ^ 3 ) = ( G - N ) \/ ( U ^ 3 ) = -u ( G + N ) ) ) | 
						
							| 226 | 45 146 225 | mpjaodan |  |-  ( ph -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |