Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|- ( ph -> P e. CC ) |
2 |
|
dcubic.d |
|- ( ph -> Q e. CC ) |
3 |
|
dcubic.x |
|- ( ph -> X e. CC ) |
4 |
|
dcubic.t |
|- ( ph -> T e. CC ) |
5 |
|
dcubic.3 |
|- ( ph -> ( T ^ 3 ) = ( G - N ) ) |
6 |
|
dcubic.g |
|- ( ph -> G e. CC ) |
7 |
|
dcubic.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) + ( M ^ 3 ) ) ) |
8 |
|
dcubic.m |
|- ( ph -> M = ( P / 3 ) ) |
9 |
|
dcubic.n |
|- ( ph -> N = ( Q / 2 ) ) |
10 |
|
dcubic.0 |
|- ( ph -> T =/= 0 ) |
11 |
|
dcubic2.u |
|- ( ph -> U e. CC ) |
12 |
|
dcubic2.z |
|- ( ph -> U =/= 0 ) |
13 |
|
dcubic2.2 |
|- ( ph -> X = ( U - ( M / U ) ) ) |
14 |
|
dcubic2.x |
|- ( ph -> ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 ) |
15 |
11 4 10
|
divcld |
|- ( ph -> ( U / T ) e. CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( U / T ) e. CC ) |
17 |
|
3nn0 |
|- 3 e. NN0 |
18 |
17
|
a1i |
|- ( ph -> 3 e. NN0 ) |
19 |
11 4 10 18
|
expdivd |
|- ( ph -> ( ( U / T ) ^ 3 ) = ( ( U ^ 3 ) / ( T ^ 3 ) ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U / T ) ^ 3 ) = ( ( U ^ 3 ) / ( T ^ 3 ) ) ) |
21 |
|
oveq1 |
|- ( ( U ^ 3 ) = ( G - N ) -> ( ( U ^ 3 ) / ( T ^ 3 ) ) = ( ( G - N ) / ( T ^ 3 ) ) ) |
22 |
5
|
oveq1d |
|- ( ph -> ( ( T ^ 3 ) / ( T ^ 3 ) ) = ( ( G - N ) / ( T ^ 3 ) ) ) |
23 |
|
expcl |
|- ( ( T e. CC /\ 3 e. NN0 ) -> ( T ^ 3 ) e. CC ) |
24 |
4 17 23
|
sylancl |
|- ( ph -> ( T ^ 3 ) e. CC ) |
25 |
|
3z |
|- 3 e. ZZ |
26 |
25
|
a1i |
|- ( ph -> 3 e. ZZ ) |
27 |
4 10 26
|
expne0d |
|- ( ph -> ( T ^ 3 ) =/= 0 ) |
28 |
24 27
|
dividd |
|- ( ph -> ( ( T ^ 3 ) / ( T ^ 3 ) ) = 1 ) |
29 |
22 28
|
eqtr3d |
|- ( ph -> ( ( G - N ) / ( T ^ 3 ) ) = 1 ) |
30 |
21 29
|
sylan9eqr |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U ^ 3 ) / ( T ^ 3 ) ) = 1 ) |
31 |
20 30
|
eqtrd |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> ( ( U / T ) ^ 3 ) = 1 ) |
32 |
11 4 10
|
divcan1d |
|- ( ph -> ( ( U / T ) x. T ) = U ) |
33 |
32
|
oveq2d |
|- ( ph -> ( M / ( ( U / T ) x. T ) ) = ( M / U ) ) |
34 |
32 33
|
oveq12d |
|- ( ph -> ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) = ( U - ( M / U ) ) ) |
35 |
13 34
|
eqtr4d |
|- ( ph -> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) |
37 |
|
oveq1 |
|- ( r = ( U / T ) -> ( r ^ 3 ) = ( ( U / T ) ^ 3 ) ) |
38 |
37
|
eqeq1d |
|- ( r = ( U / T ) -> ( ( r ^ 3 ) = 1 <-> ( ( U / T ) ^ 3 ) = 1 ) ) |
39 |
|
oveq1 |
|- ( r = ( U / T ) -> ( r x. T ) = ( ( U / T ) x. T ) ) |
40 |
39
|
oveq2d |
|- ( r = ( U / T ) -> ( M / ( r x. T ) ) = ( M / ( ( U / T ) x. T ) ) ) |
41 |
39 40
|
oveq12d |
|- ( r = ( U / T ) -> ( ( r x. T ) - ( M / ( r x. T ) ) ) = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) |
42 |
41
|
eqeq2d |
|- ( r = ( U / T ) -> ( X = ( ( r x. T ) - ( M / ( r x. T ) ) ) <-> X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) |
43 |
38 42
|
anbi12d |
|- ( r = ( U / T ) -> ( ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) <-> ( ( ( U / T ) ^ 3 ) = 1 /\ X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) ) |
44 |
43
|
rspcev |
|- ( ( ( U / T ) e. CC /\ ( ( ( U / T ) ^ 3 ) = 1 /\ X = ( ( ( U / T ) x. T ) - ( M / ( ( U / T ) x. T ) ) ) ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
45 |
16 31 36 44
|
syl12anc |
|- ( ( ph /\ ( U ^ 3 ) = ( G - N ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
46 |
|
3cn |
|- 3 e. CC |
47 |
46
|
a1i |
|- ( ph -> 3 e. CC ) |
48 |
|
3ne0 |
|- 3 =/= 0 |
49 |
48
|
a1i |
|- ( ph -> 3 =/= 0 ) |
50 |
1 47 49
|
divcld |
|- ( ph -> ( P / 3 ) e. CC ) |
51 |
8 50
|
eqeltrd |
|- ( ph -> M e. CC ) |
52 |
51 11 12
|
divcld |
|- ( ph -> ( M / U ) e. CC ) |
53 |
52
|
negcld |
|- ( ph -> -u ( M / U ) e. CC ) |
54 |
53 4 10
|
divcld |
|- ( ph -> ( -u ( M / U ) / T ) e. CC ) |
55 |
54
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( M / U ) / T ) e. CC ) |
56 |
53 4 10 18
|
expdivd |
|- ( ph -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( ( -u ( M / U ) ^ 3 ) / ( T ^ 3 ) ) ) |
57 |
51 11 12
|
divnegd |
|- ( ph -> -u ( M / U ) = ( -u M / U ) ) |
58 |
57
|
oveq1d |
|- ( ph -> ( -u ( M / U ) ^ 3 ) = ( ( -u M / U ) ^ 3 ) ) |
59 |
51
|
negcld |
|- ( ph -> -u M e. CC ) |
60 |
59 11 12 18
|
expdivd |
|- ( ph -> ( ( -u M / U ) ^ 3 ) = ( ( -u M ^ 3 ) / ( U ^ 3 ) ) ) |
61 |
5
|
oveq2d |
|- ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( ( G + N ) x. ( G - N ) ) ) |
62 |
2
|
halfcld |
|- ( ph -> ( Q / 2 ) e. CC ) |
63 |
9 62
|
eqeltrd |
|- ( ph -> N e. CC ) |
64 |
|
subsq |
|- ( ( G e. CC /\ N e. CC ) -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( G + N ) x. ( G - N ) ) ) |
65 |
6 63 64
|
syl2anc |
|- ( ph -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( G + N ) x. ( G - N ) ) ) |
66 |
61 65
|
eqtr4d |
|- ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( ( G ^ 2 ) - ( N ^ 2 ) ) ) |
67 |
7
|
oveq1d |
|- ( ph -> ( ( G ^ 2 ) - ( N ^ 2 ) ) = ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( N ^ 2 ) ) ) |
68 |
63
|
sqcld |
|- ( ph -> ( N ^ 2 ) e. CC ) |
69 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
70 |
51 17 69
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
71 |
68 70
|
pncan2d |
|- ( ph -> ( ( ( N ^ 2 ) + ( M ^ 3 ) ) - ( N ^ 2 ) ) = ( M ^ 3 ) ) |
72 |
66 67 71
|
3eqtrd |
|- ( ph -> ( ( G + N ) x. ( T ^ 3 ) ) = ( M ^ 3 ) ) |
73 |
72
|
negeqd |
|- ( ph -> -u ( ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) |
74 |
6 63
|
addcld |
|- ( ph -> ( G + N ) e. CC ) |
75 |
74 24
|
mulneg1d |
|- ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( ( G + N ) x. ( T ^ 3 ) ) ) |
76 |
|
3nn |
|- 3 e. NN |
77 |
76
|
a1i |
|- ( ph -> 3 e. NN ) |
78 |
|
n2dvds3 |
|- -. 2 || 3 |
79 |
78
|
a1i |
|- ( ph -> -. 2 || 3 ) |
80 |
|
oexpneg |
|- ( ( M e. CC /\ 3 e. NN /\ -. 2 || 3 ) -> ( -u M ^ 3 ) = -u ( M ^ 3 ) ) |
81 |
51 77 79 80
|
syl3anc |
|- ( ph -> ( -u M ^ 3 ) = -u ( M ^ 3 ) ) |
82 |
73 75 81
|
3eqtr4d |
|- ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = ( -u M ^ 3 ) ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( -u ( G + N ) x. ( T ^ 3 ) ) / ( U ^ 3 ) ) = ( ( -u M ^ 3 ) / ( U ^ 3 ) ) ) |
84 |
74
|
negcld |
|- ( ph -> -u ( G + N ) e. CC ) |
85 |
|
expcl |
|- ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) |
86 |
11 17 85
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. CC ) |
87 |
11 12 26
|
expne0d |
|- ( ph -> ( U ^ 3 ) =/= 0 ) |
88 |
84 24 86 87
|
div23d |
|- ( ph -> ( ( -u ( G + N ) x. ( T ^ 3 ) ) / ( U ^ 3 ) ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) |
89 |
83 88
|
eqtr3d |
|- ( ph -> ( ( -u M ^ 3 ) / ( U ^ 3 ) ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) |
90 |
58 60 89
|
3eqtrd |
|- ( ph -> ( -u ( M / U ) ^ 3 ) = ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) ) |
91 |
90
|
oveq1d |
|- ( ph -> ( ( -u ( M / U ) ^ 3 ) / ( T ^ 3 ) ) = ( ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) / ( T ^ 3 ) ) ) |
92 |
84 86 87
|
divcld |
|- ( ph -> ( -u ( G + N ) / ( U ^ 3 ) ) e. CC ) |
93 |
92 24 27
|
divcan4d |
|- ( ph -> ( ( ( -u ( G + N ) / ( U ^ 3 ) ) x. ( T ^ 3 ) ) / ( T ^ 3 ) ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) |
94 |
56 91 93
|
3eqtrd |
|- ( ph -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) |
95 |
94
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) ^ 3 ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) |
96 |
|
oveq1 |
|- ( ( U ^ 3 ) = -u ( G + N ) -> ( ( U ^ 3 ) / ( U ^ 3 ) ) = ( -u ( G + N ) / ( U ^ 3 ) ) ) |
97 |
96
|
eqcomd |
|- ( ( U ^ 3 ) = -u ( G + N ) -> ( -u ( G + N ) / ( U ^ 3 ) ) = ( ( U ^ 3 ) / ( U ^ 3 ) ) ) |
98 |
86 87
|
dividd |
|- ( ph -> ( ( U ^ 3 ) / ( U ^ 3 ) ) = 1 ) |
99 |
97 98
|
sylan9eqr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) / ( U ^ 3 ) ) = 1 ) |
100 |
95 99
|
eqtrd |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) ^ 3 ) = 1 ) |
101 |
52 11
|
neg2subd |
|- ( ph -> ( -u ( M / U ) - -u U ) = ( U - ( M / U ) ) ) |
102 |
13 101
|
eqtr4d |
|- ( ph -> X = ( -u ( M / U ) - -u U ) ) |
103 |
102
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> X = ( -u ( M / U ) - -u U ) ) |
104 |
53 4 10
|
divcan1d |
|- ( ph -> ( ( -u ( M / U ) / T ) x. T ) = -u ( M / U ) ) |
105 |
104
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) x. T ) = -u ( M / U ) ) |
106 |
51 11 12
|
divneg2d |
|- ( ph -> -u ( M / U ) = ( M / -u U ) ) |
107 |
104 106
|
eqtrd |
|- ( ph -> ( ( -u ( M / U ) / T ) x. T ) = ( M / -u U ) ) |
108 |
107
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( -u ( M / U ) / T ) x. T ) = ( M / -u U ) ) |
109 |
108
|
oveq2d |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( ( -u ( M / U ) / T ) x. T ) ) = ( M / ( M / -u U ) ) ) |
110 |
51
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> M e. CC ) |
111 |
11
|
negcld |
|- ( ph -> -u U e. CC ) |
112 |
111
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u U e. CC ) |
113 |
75 73
|
eqtrd |
|- ( ph -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) |
114 |
113
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) x. ( T ^ 3 ) ) = -u ( M ^ 3 ) ) |
115 |
84
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( G + N ) e. CC ) |
116 |
24
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( T ^ 3 ) e. CC ) |
117 |
|
simpr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( U ^ 3 ) = -u ( G + N ) ) |
118 |
87
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( U ^ 3 ) =/= 0 ) |
119 |
117 118
|
eqnetrrd |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( G + N ) =/= 0 ) |
120 |
27
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( T ^ 3 ) =/= 0 ) |
121 |
115 116 119 120
|
mulne0d |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( -u ( G + N ) x. ( T ^ 3 ) ) =/= 0 ) |
122 |
114 121
|
eqnetrrd |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u ( M ^ 3 ) =/= 0 ) |
123 |
|
oveq1 |
|- ( M = 0 -> ( M ^ 3 ) = ( 0 ^ 3 ) ) |
124 |
|
0exp |
|- ( 3 e. NN -> ( 0 ^ 3 ) = 0 ) |
125 |
76 124
|
ax-mp |
|- ( 0 ^ 3 ) = 0 |
126 |
123 125
|
eqtrdi |
|- ( M = 0 -> ( M ^ 3 ) = 0 ) |
127 |
126
|
negeqd |
|- ( M = 0 -> -u ( M ^ 3 ) = -u 0 ) |
128 |
|
neg0 |
|- -u 0 = 0 |
129 |
127 128
|
eqtrdi |
|- ( M = 0 -> -u ( M ^ 3 ) = 0 ) |
130 |
129
|
necon3i |
|- ( -u ( M ^ 3 ) =/= 0 -> M =/= 0 ) |
131 |
122 130
|
syl |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> M =/= 0 ) |
132 |
11 12
|
negne0d |
|- ( ph -> -u U =/= 0 ) |
133 |
132
|
adantr |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> -u U =/= 0 ) |
134 |
110 112 131 133
|
ddcand |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( M / -u U ) ) = -u U ) |
135 |
109 134
|
eqtrd |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( M / ( ( -u ( M / U ) / T ) x. T ) ) = -u U ) |
136 |
105 135
|
oveq12d |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) = ( -u ( M / U ) - -u U ) ) |
137 |
103 136
|
eqtr4d |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) |
138 |
|
oveq1 |
|- ( r = ( -u ( M / U ) / T ) -> ( r ^ 3 ) = ( ( -u ( M / U ) / T ) ^ 3 ) ) |
139 |
138
|
eqeq1d |
|- ( r = ( -u ( M / U ) / T ) -> ( ( r ^ 3 ) = 1 <-> ( ( -u ( M / U ) / T ) ^ 3 ) = 1 ) ) |
140 |
|
oveq1 |
|- ( r = ( -u ( M / U ) / T ) -> ( r x. T ) = ( ( -u ( M / U ) / T ) x. T ) ) |
141 |
140
|
oveq2d |
|- ( r = ( -u ( M / U ) / T ) -> ( M / ( r x. T ) ) = ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) |
142 |
140 141
|
oveq12d |
|- ( r = ( -u ( M / U ) / T ) -> ( ( r x. T ) - ( M / ( r x. T ) ) ) = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) |
143 |
142
|
eqeq2d |
|- ( r = ( -u ( M / U ) / T ) -> ( X = ( ( r x. T ) - ( M / ( r x. T ) ) ) <-> X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) |
144 |
139 143
|
anbi12d |
|- ( r = ( -u ( M / U ) / T ) -> ( ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) <-> ( ( ( -u ( M / U ) / T ) ^ 3 ) = 1 /\ X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) ) |
145 |
144
|
rspcev |
|- ( ( ( -u ( M / U ) / T ) e. CC /\ ( ( ( -u ( M / U ) / T ) ^ 3 ) = 1 /\ X = ( ( ( -u ( M / U ) / T ) x. T ) - ( M / ( ( -u ( M / U ) / T ) x. T ) ) ) ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
146 |
55 100 137 145
|
syl12anc |
|- ( ( ph /\ ( U ^ 3 ) = -u ( G + N ) ) -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |
147 |
86
|
sqcld |
|- ( ph -> ( ( U ^ 3 ) ^ 2 ) e. CC ) |
148 |
147
|
mulid2d |
|- ( ph -> ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) = ( ( U ^ 3 ) ^ 2 ) ) |
149 |
2 86
|
mulcld |
|- ( ph -> ( Q x. ( U ^ 3 ) ) e. CC ) |
150 |
149 70
|
negsubd |
|- ( ph -> ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) = ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) |
151 |
148 150
|
oveq12d |
|- ( ph -> ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) ) |
152 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dcubic1lem |
|- ( ph -> ( ( ( X ^ 3 ) + ( ( P x. X ) + Q ) ) = 0 <-> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) ) |
153 |
14 152
|
mpbid |
|- ( ph -> ( ( ( U ^ 3 ) ^ 2 ) + ( ( Q x. ( U ^ 3 ) ) - ( M ^ 3 ) ) ) = 0 ) |
154 |
151 153
|
eqtrd |
|- ( ph -> ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = 0 ) |
155 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
156 |
|
ax-1ne0 |
|- 1 =/= 0 |
157 |
156
|
a1i |
|- ( ph -> 1 =/= 0 ) |
158 |
70
|
negcld |
|- ( ph -> -u ( M ^ 3 ) e. CC ) |
159 |
|
2cn |
|- 2 e. CC |
160 |
|
mulcl |
|- ( ( 2 e. CC /\ G e. CC ) -> ( 2 x. G ) e. CC ) |
161 |
159 6 160
|
sylancr |
|- ( ph -> ( 2 x. G ) e. CC ) |
162 |
|
sqmul |
|- ( ( 2 e. CC /\ G e. CC ) -> ( ( 2 x. G ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) ) |
163 |
159 6 162
|
sylancr |
|- ( ph -> ( ( 2 x. G ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) ) |
164 |
7
|
oveq2d |
|- ( ph -> ( ( 2 ^ 2 ) x. ( G ^ 2 ) ) = ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) ) |
165 |
159
|
sqcli |
|- ( 2 ^ 2 ) e. CC |
166 |
|
mulcl |
|- ( ( ( 2 ^ 2 ) e. CC /\ ( N ^ 2 ) e. CC ) -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) e. CC ) |
167 |
165 68 166
|
sylancr |
|- ( ph -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) e. CC ) |
168 |
|
mulcl |
|- ( ( ( 2 ^ 2 ) e. CC /\ ( M ^ 3 ) e. CC ) -> ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) e. CC ) |
169 |
165 70 168
|
sylancr |
|- ( ph -> ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) e. CC ) |
170 |
167 169
|
subnegd |
|- ( ph -> ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) - -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) + ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) |
171 |
9
|
oveq2d |
|- ( ph -> ( 2 x. N ) = ( 2 x. ( Q / 2 ) ) ) |
172 |
159
|
a1i |
|- ( ph -> 2 e. CC ) |
173 |
|
2ne0 |
|- 2 =/= 0 |
174 |
173
|
a1i |
|- ( ph -> 2 =/= 0 ) |
175 |
2 172 174
|
divcan2d |
|- ( ph -> ( 2 x. ( Q / 2 ) ) = Q ) |
176 |
171 175
|
eqtrd |
|- ( ph -> ( 2 x. N ) = Q ) |
177 |
176
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) ^ 2 ) = ( Q ^ 2 ) ) |
178 |
|
sqmul |
|- ( ( 2 e. CC /\ N e. CC ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
179 |
159 63 178
|
sylancr |
|- ( ph -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
180 |
177 179
|
eqtr3d |
|- ( ph -> ( Q ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
181 |
158
|
mulid2d |
|- ( ph -> ( 1 x. -u ( M ^ 3 ) ) = -u ( M ^ 3 ) ) |
182 |
181
|
oveq2d |
|- ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = ( 4 x. -u ( M ^ 3 ) ) ) |
183 |
|
4cn |
|- 4 e. CC |
184 |
|
mulneg2 |
|- ( ( 4 e. CC /\ ( M ^ 3 ) e. CC ) -> ( 4 x. -u ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) ) |
185 |
183 70 184
|
sylancr |
|- ( ph -> ( 4 x. -u ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) ) |
186 |
182 185
|
eqtrd |
|- ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = -u ( 4 x. ( M ^ 3 ) ) ) |
187 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
188 |
187
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) = ( 4 x. ( M ^ 3 ) ) |
189 |
188
|
negeqi |
|- -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) = -u ( 4 x. ( M ^ 3 ) ) |
190 |
186 189
|
eqtr4di |
|- ( ph -> ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) = -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) |
191 |
180 190
|
oveq12d |
|- ( ph -> ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) - -u ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) |
192 |
165
|
a1i |
|- ( ph -> ( 2 ^ 2 ) e. CC ) |
193 |
192 68 70
|
adddid |
|- ( ph -> ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) = ( ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) + ( ( 2 ^ 2 ) x. ( M ^ 3 ) ) ) ) |
194 |
170 191 193
|
3eqtr4rd |
|- ( ph -> ( ( 2 ^ 2 ) x. ( ( N ^ 2 ) + ( M ^ 3 ) ) ) = ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) ) |
195 |
163 164 194
|
3eqtrd |
|- ( ph -> ( ( 2 x. G ) ^ 2 ) = ( ( Q ^ 2 ) - ( 4 x. ( 1 x. -u ( M ^ 3 ) ) ) ) ) |
196 |
155 157 2 158 86 161 195
|
quad2 |
|- ( ph -> ( ( ( 1 x. ( ( U ^ 3 ) ^ 2 ) ) + ( ( Q x. ( U ^ 3 ) ) + -u ( M ^ 3 ) ) ) = 0 <-> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) ) ) |
197 |
154 196
|
mpbid |
|- ( ph -> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) ) |
198 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
199 |
198
|
oveq2i |
|- ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( ( -u Q + ( 2 x. G ) ) / 2 ) |
200 |
2
|
negcld |
|- ( ph -> -u Q e. CC ) |
201 |
200 161 172 174
|
divdird |
|- ( ph -> ( ( -u Q + ( 2 x. G ) ) / 2 ) = ( ( -u Q / 2 ) + ( ( 2 x. G ) / 2 ) ) ) |
202 |
9
|
negeqd |
|- ( ph -> -u N = -u ( Q / 2 ) ) |
203 |
2 172 174
|
divnegd |
|- ( ph -> -u ( Q / 2 ) = ( -u Q / 2 ) ) |
204 |
202 203
|
eqtr2d |
|- ( ph -> ( -u Q / 2 ) = -u N ) |
205 |
6 172 174
|
divcan3d |
|- ( ph -> ( ( 2 x. G ) / 2 ) = G ) |
206 |
204 205
|
oveq12d |
|- ( ph -> ( ( -u Q / 2 ) + ( ( 2 x. G ) / 2 ) ) = ( -u N + G ) ) |
207 |
63
|
negcld |
|- ( ph -> -u N e. CC ) |
208 |
207 6
|
addcomd |
|- ( ph -> ( -u N + G ) = ( G + -u N ) ) |
209 |
6 63
|
negsubd |
|- ( ph -> ( G + -u N ) = ( G - N ) ) |
210 |
208 209
|
eqtrd |
|- ( ph -> ( -u N + G ) = ( G - N ) ) |
211 |
201 206 210
|
3eqtrd |
|- ( ph -> ( ( -u Q + ( 2 x. G ) ) / 2 ) = ( G - N ) ) |
212 |
199 211
|
eqtrid |
|- ( ph -> ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( G - N ) ) |
213 |
212
|
eqeq2d |
|- ( ph -> ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) <-> ( U ^ 3 ) = ( G - N ) ) ) |
214 |
198
|
oveq2i |
|- ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) = ( ( -u Q - ( 2 x. G ) ) / 2 ) |
215 |
204 205
|
oveq12d |
|- ( ph -> ( ( -u Q / 2 ) - ( ( 2 x. G ) / 2 ) ) = ( -u N - G ) ) |
216 |
200 161 172 174
|
divsubdird |
|- ( ph -> ( ( -u Q - ( 2 x. G ) ) / 2 ) = ( ( -u Q / 2 ) - ( ( 2 x. G ) / 2 ) ) ) |
217 |
6 63
|
addcomd |
|- ( ph -> ( G + N ) = ( N + G ) ) |
218 |
217
|
negeqd |
|- ( ph -> -u ( G + N ) = -u ( N + G ) ) |
219 |
63 6
|
negdi2d |
|- ( ph -> -u ( N + G ) = ( -u N - G ) ) |
220 |
218 219
|
eqtrd |
|- ( ph -> -u ( G + N ) = ( -u N - G ) ) |
221 |
215 216 220
|
3eqtr4d |
|- ( ph -> ( ( -u Q - ( 2 x. G ) ) / 2 ) = -u ( G + N ) ) |
222 |
214 221
|
eqtrid |
|- ( ph -> ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) = -u ( G + N ) ) |
223 |
222
|
eqeq2d |
|- ( ph -> ( ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) <-> ( U ^ 3 ) = -u ( G + N ) ) ) |
224 |
213 223
|
orbi12d |
|- ( ph -> ( ( ( U ^ 3 ) = ( ( -u Q + ( 2 x. G ) ) / ( 2 x. 1 ) ) \/ ( U ^ 3 ) = ( ( -u Q - ( 2 x. G ) ) / ( 2 x. 1 ) ) ) <-> ( ( U ^ 3 ) = ( G - N ) \/ ( U ^ 3 ) = -u ( G + N ) ) ) ) |
225 |
197 224
|
mpbid |
|- ( ph -> ( ( U ^ 3 ) = ( G - N ) \/ ( U ^ 3 ) = -u ( G + N ) ) ) |
226 |
45 146 225
|
mpjaodan |
|- ( ph -> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = ( ( r x. T ) - ( M / ( r x. T ) ) ) ) ) |