Metamath Proof Explorer


Theorem ddif

Description: Double complement under universal class. Exercise 4.10(s) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ddif
|- ( _V \ ( _V \ A ) ) = A

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 eldif
 |-  ( x e. ( _V \ A ) <-> ( x e. _V /\ -. x e. A ) )
3 1 2 mpbiran
 |-  ( x e. ( _V \ A ) <-> -. x e. A )
4 3 con2bii
 |-  ( x e. A <-> -. x e. ( _V \ A ) )
5 1 biantrur
 |-  ( -. x e. ( _V \ A ) <-> ( x e. _V /\ -. x e. ( _V \ A ) ) )
6 4 5 bitr2i
 |-  ( ( x e. _V /\ -. x e. ( _V \ A ) ) <-> x e. A )
7 6 difeqri
 |-  ( _V \ ( _V \ A ) ) = A