Step |
Hyp |
Ref |
Expression |
1 |
|
dec2dvds.1 |
|- A e. NN0 |
2 |
|
dec2dvds.2 |
|- B e. NN0 |
3 |
|
dec2dvds.3 |
|- ( B x. 2 ) = C |
4 |
|
dec2dvds.4 |
|- D = ( C + 1 ) |
5 |
|
5nn0 |
|- 5 e. NN0 |
6 |
5
|
nn0zi |
|- 5 e. ZZ |
7 |
|
2z |
|- 2 e. ZZ |
8 |
|
dvdsmul2 |
|- ( ( 5 e. ZZ /\ 2 e. ZZ ) -> 2 || ( 5 x. 2 ) ) |
9 |
6 7 8
|
mp2an |
|- 2 || ( 5 x. 2 ) |
10 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
11 |
9 10
|
breqtri |
|- 2 || ; 1 0 |
12 |
|
10nn0 |
|- ; 1 0 e. NN0 |
13 |
12
|
nn0zi |
|- ; 1 0 e. ZZ |
14 |
1
|
nn0zi |
|- A e. ZZ |
15 |
|
dvdsmultr1 |
|- ( ( 2 e. ZZ /\ ; 1 0 e. ZZ /\ A e. ZZ ) -> ( 2 || ; 1 0 -> 2 || ( ; 1 0 x. A ) ) ) |
16 |
7 13 14 15
|
mp3an |
|- ( 2 || ; 1 0 -> 2 || ( ; 1 0 x. A ) ) |
17 |
11 16
|
ax-mp |
|- 2 || ( ; 1 0 x. A ) |
18 |
2
|
nn0zi |
|- B e. ZZ |
19 |
|
dvdsmul2 |
|- ( ( B e. ZZ /\ 2 e. ZZ ) -> 2 || ( B x. 2 ) ) |
20 |
18 7 19
|
mp2an |
|- 2 || ( B x. 2 ) |
21 |
20 3
|
breqtri |
|- 2 || C |
22 |
12 1
|
nn0mulcli |
|- ( ; 1 0 x. A ) e. NN0 |
23 |
22
|
nn0zi |
|- ( ; 1 0 x. A ) e. ZZ |
24 |
|
2nn0 |
|- 2 e. NN0 |
25 |
2 24
|
nn0mulcli |
|- ( B x. 2 ) e. NN0 |
26 |
3 25
|
eqeltrri |
|- C e. NN0 |
27 |
26
|
nn0zi |
|- C e. ZZ |
28 |
|
dvds2add |
|- ( ( 2 e. ZZ /\ ( ; 1 0 x. A ) e. ZZ /\ C e. ZZ ) -> ( ( 2 || ( ; 1 0 x. A ) /\ 2 || C ) -> 2 || ( ( ; 1 0 x. A ) + C ) ) ) |
29 |
7 23 27 28
|
mp3an |
|- ( ( 2 || ( ; 1 0 x. A ) /\ 2 || C ) -> 2 || ( ( ; 1 0 x. A ) + C ) ) |
30 |
17 21 29
|
mp2an |
|- 2 || ( ( ; 1 0 x. A ) + C ) |
31 |
|
dfdec10 |
|- ; A C = ( ( ; 1 0 x. A ) + C ) |
32 |
30 31
|
breqtrri |
|- 2 || ; A C |
33 |
1 26
|
deccl |
|- ; A C e. NN0 |
34 |
33
|
nn0zi |
|- ; A C e. ZZ |
35 |
|
2nn |
|- 2 e. NN |
36 |
|
1lt2 |
|- 1 < 2 |
37 |
|
ndvdsp1 |
|- ( ( ; A C e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ; A C -> -. 2 || ( ; A C + 1 ) ) ) |
38 |
34 35 36 37
|
mp3an |
|- ( 2 || ; A C -> -. 2 || ( ; A C + 1 ) ) |
39 |
32 38
|
ax-mp |
|- -. 2 || ( ; A C + 1 ) |
40 |
4
|
eqcomi |
|- ( C + 1 ) = D |
41 |
|
eqid |
|- ; A C = ; A C |
42 |
1 26 40 41
|
decsuc |
|- ( ; A C + 1 ) = ; A D |
43 |
42
|
breq2i |
|- ( 2 || ( ; A C + 1 ) <-> 2 || ; A D ) |
44 |
39 43
|
mtbi |
|- -. 2 || ; A D |