Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dec5dvds.1 | |- A e. NN0 |
|
dec5dvds.2 | |- B e. NN |
||
dec5dvds.3 | |- B < 5 |
||
dec5dvds2.4 | |- ( 5 + B ) = C |
||
Assertion | dec5dvds2 | |- -. 5 || ; A C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dec5dvds.1 | |- A e. NN0 |
|
2 | dec5dvds.2 | |- B e. NN |
|
3 | dec5dvds.3 | |- B < 5 |
|
4 | dec5dvds2.4 | |- ( 5 + B ) = C |
|
5 | 1 2 3 | dec5dvds | |- -. 5 || ; A B |
6 | 5nn0 | |- 5 e. NN0 |
|
7 | 6 | nn0zi | |- 5 e. ZZ |
8 | 2 | nnnn0i | |- B e. NN0 |
9 | 1 8 | deccl | |- ; A B e. NN0 |
10 | 9 | nn0zi | |- ; A B e. ZZ |
11 | dvdsadd | |- ( ( 5 e. ZZ /\ ; A B e. ZZ ) -> ( 5 || ; A B <-> 5 || ( 5 + ; A B ) ) ) |
|
12 | 7 10 11 | mp2an | |- ( 5 || ; A B <-> 5 || ( 5 + ; A B ) ) |
13 | 0nn0 | |- 0 e. NN0 |
|
14 | 6 | dec0h | |- 5 = ; 0 5 |
15 | eqid | |- ; A B = ; A B |
|
16 | 1 | nn0cni | |- A e. CC |
17 | 16 | addid2i | |- ( 0 + A ) = A |
18 | 13 6 1 8 14 15 17 4 | decadd | |- ( 5 + ; A B ) = ; A C |
19 | 18 | breq2i | |- ( 5 || ( 5 + ; A B ) <-> 5 || ; A C ) |
20 | 12 19 | bitri | |- ( 5 || ; A B <-> 5 || ; A C ) |
21 | 5 20 | mtbi | |- -. 5 || ; A C |