Metamath Proof Explorer


Theorem dec5dvds2

Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses dec5dvds.1
|- A e. NN0
dec5dvds.2
|- B e. NN
dec5dvds.3
|- B < 5
dec5dvds2.4
|- ( 5 + B ) = C
Assertion dec5dvds2
|- -. 5 || ; A C

Proof

Step Hyp Ref Expression
1 dec5dvds.1
 |-  A e. NN0
2 dec5dvds.2
 |-  B e. NN
3 dec5dvds.3
 |-  B < 5
4 dec5dvds2.4
 |-  ( 5 + B ) = C
5 1 2 3 dec5dvds
 |-  -. 5 || ; A B
6 5nn0
 |-  5 e. NN0
7 6 nn0zi
 |-  5 e. ZZ
8 2 nnnn0i
 |-  B e. NN0
9 1 8 deccl
 |-  ; A B e. NN0
10 9 nn0zi
 |-  ; A B e. ZZ
11 dvdsadd
 |-  ( ( 5 e. ZZ /\ ; A B e. ZZ ) -> ( 5 || ; A B <-> 5 || ( 5 + ; A B ) ) )
12 7 10 11 mp2an
 |-  ( 5 || ; A B <-> 5 || ( 5 + ; A B ) )
13 0nn0
 |-  0 e. NN0
14 6 dec0h
 |-  5 = ; 0 5
15 eqid
 |-  ; A B = ; A B
16 1 nn0cni
 |-  A e. CC
17 16 addid2i
 |-  ( 0 + A ) = A
18 13 6 1 8 14 15 17 4 decadd
 |-  ( 5 + ; A B ) = ; A C
19 18 breq2i
 |-  ( 5 || ( 5 + ; A B ) <-> 5 || ; A C )
20 12 19 bitri
 |-  ( 5 || ; A B <-> 5 || ; A C )
21 5 20 mtbi
 |-  -. 5 || ; A C