Metamath Proof Explorer


Theorem dec5nprm

Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypothesis dec5nprm.1
|- A e. NN
Assertion dec5nprm
|- -. ; A 5 e. Prime

Proof

Step Hyp Ref Expression
1 dec5nprm.1
 |-  A e. NN
2 2nn
 |-  2 e. NN
3 2 1 nnmulcli
 |-  ( 2 x. A ) e. NN
4 peano2nn
 |-  ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) + 1 ) e. NN )
5 3 4 ax-mp
 |-  ( ( 2 x. A ) + 1 ) e. NN
6 5nn
 |-  5 e. NN
7 1nn0
 |-  1 e. NN0
8 1lt2
 |-  1 < 2
9 2 1 7 7 8 numlti
 |-  1 < ( ( 2 x. A ) + 1 )
10 1lt5
 |-  1 < 5
11 2 nncni
 |-  2 e. CC
12 1 nncni
 |-  A e. CC
13 5cn
 |-  5 e. CC
14 11 12 13 mul32i
 |-  ( ( 2 x. A ) x. 5 ) = ( ( 2 x. 5 ) x. A )
15 5t2e10
 |-  ( 5 x. 2 ) = ; 1 0
16 13 11 15 mulcomli
 |-  ( 2 x. 5 ) = ; 1 0
17 16 oveq1i
 |-  ( ( 2 x. 5 ) x. A ) = ( ; 1 0 x. A )
18 14 17 eqtri
 |-  ( ( 2 x. A ) x. 5 ) = ( ; 1 0 x. A )
19 13 mulid2i
 |-  ( 1 x. 5 ) = 5
20 18 19 oveq12i
 |-  ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) ) = ( ( ; 1 0 x. A ) + 5 )
21 3 nncni
 |-  ( 2 x. A ) e. CC
22 ax-1cn
 |-  1 e. CC
23 21 22 13 adddiri
 |-  ( ( ( 2 x. A ) + 1 ) x. 5 ) = ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) )
24 dfdec10
 |-  ; A 5 = ( ( ; 1 0 x. A ) + 5 )
25 20 23 24 3eqtr4i
 |-  ( ( ( 2 x. A ) + 1 ) x. 5 ) = ; A 5
26 5 6 9 10 25 nprmi
 |-  -. ; A 5 e. Prime