Metamath Proof Explorer
		
		
		
		Description:  Add two numerals M and N (with carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014)  (Revised by AV, 6-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decma.a | |- A e. NN0 | 
					
						|  |  | decma.b | |- B e. NN0 | 
					
						|  |  | decma.c | |- C e. NN0 | 
					
						|  |  | decma.d | |- D e. NN0 | 
					
						|  |  | decma.m | |- M = ; A B | 
					
						|  |  | decma.n | |- N = ; C D | 
					
						|  |  | decaddc.e | |- ( ( A + C ) + 1 ) = E | 
					
						|  |  | decaddc2.t | |- ( B + D ) = ; 1 0 | 
				
					|  | Assertion | decaddc2 | |- ( M + N ) = ; E 0 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decma.a |  |-  A e. NN0 | 
						
							| 2 |  | decma.b |  |-  B e. NN0 | 
						
							| 3 |  | decma.c |  |-  C e. NN0 | 
						
							| 4 |  | decma.d |  |-  D e. NN0 | 
						
							| 5 |  | decma.m |  |-  M = ; A B | 
						
							| 6 |  | decma.n |  |-  N = ; C D | 
						
							| 7 |  | decaddc.e |  |-  ( ( A + C ) + 1 ) = E | 
						
							| 8 |  | decaddc2.t |  |-  ( B + D ) = ; 1 0 | 
						
							| 9 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 10 | 1 2 3 4 5 6 7 9 8 | decaddc |  |-  ( M + N ) = ; E 0 |