Metamath Proof Explorer


Theorem decaddci2

Description: Add two numerals M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses decaddi.1
|- A e. NN0
decaddi.2
|- B e. NN0
decaddi.3
|- N e. NN0
decaddi.4
|- M = ; A B
decaddci.5
|- ( A + 1 ) = D
decaddci2.6
|- ( B + N ) = ; 1 0
Assertion decaddci2
|- ( M + N ) = ; D 0

Proof

Step Hyp Ref Expression
1 decaddi.1
 |-  A e. NN0
2 decaddi.2
 |-  B e. NN0
3 decaddi.3
 |-  N e. NN0
4 decaddi.4
 |-  M = ; A B
5 decaddci.5
 |-  ( A + 1 ) = D
6 decaddci2.6
 |-  ( B + N ) = ; 1 0
7 0nn0
 |-  0 e. NN0
8 1 2 3 4 5 7 6 decaddci
 |-  ( M + N ) = ; D 0