Metamath Proof Explorer


Theorem decaddm10

Description: The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021)

Ref Expression
Hypotheses decaddm10.a
|- A e. NN0
decaddm10.b
|- B e. NN0
Assertion decaddm10
|- ( ; A 0 + ; B 0 ) = ; ( A + B ) 0

Proof

Step Hyp Ref Expression
1 decaddm10.a
 |-  A e. NN0
2 decaddm10.b
 |-  B e. NN0
3 0nn0
 |-  0 e. NN0
4 eqid
 |-  ; A 0 = ; A 0
5 eqid
 |-  ; B 0 = ; B 0
6 eqid
 |-  ( A + B ) = ( A + B )
7 00id
 |-  ( 0 + 0 ) = 0
8 1 3 2 3 4 5 6 7 decadd
 |-  ( ; A 0 + ; B 0 ) = ; ( A + B ) 0