Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | decbin.1 | |- A e. NN0 |
|
| Assertion | decbin0 | |- ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decbin.1 | |- A e. NN0 |
|
| 2 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 3 | 2 | oveq1i | |- ( ( 2 x. 2 ) x. A ) = ( 4 x. A ) |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 1 | nn0cni | |- A e. CC |
| 6 | 4 4 5 | mulassi | |- ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) |
| 7 | 3 6 | eqtr3i | |- ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) |