Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | decbin.1 | |- A e. NN0 |
|
| Assertion | decbin2 | |- ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decbin.1 | |- A e. NN0 |
|
| 2 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 3 | 2 | oveq2i | |- ( ( 2 x. ( 2 x. A ) ) + ( 2 x. 1 ) ) = ( ( 2 x. ( 2 x. A ) ) + 2 ) |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 1 | nn0cni | |- A e. CC |
| 6 | 4 5 | mulcli | |- ( 2 x. A ) e. CC |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | 4 6 7 | adddii | |- ( 2 x. ( ( 2 x. A ) + 1 ) ) = ( ( 2 x. ( 2 x. A ) ) + ( 2 x. 1 ) ) |
| 9 | 1 | decbin0 | |- ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) |
| 10 | 9 | oveq1i | |- ( ( 4 x. A ) + 2 ) = ( ( 2 x. ( 2 x. A ) ) + 2 ) |
| 11 | 3 8 10 | 3eqtr4ri | |- ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) ) |