Metamath Proof Explorer


Theorem decbin2

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1
|- A e. NN0
Assertion decbin2
|- ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) )

Proof

Step Hyp Ref Expression
1 decbin.1
 |-  A e. NN0
2 2t1e2
 |-  ( 2 x. 1 ) = 2
3 2 oveq2i
 |-  ( ( 2 x. ( 2 x. A ) ) + ( 2 x. 1 ) ) = ( ( 2 x. ( 2 x. A ) ) + 2 )
4 2cn
 |-  2 e. CC
5 1 nn0cni
 |-  A e. CC
6 4 5 mulcli
 |-  ( 2 x. A ) e. CC
7 ax-1cn
 |-  1 e. CC
8 4 6 7 adddii
 |-  ( 2 x. ( ( 2 x. A ) + 1 ) ) = ( ( 2 x. ( 2 x. A ) ) + ( 2 x. 1 ) )
9 1 decbin0
 |-  ( 4 x. A ) = ( 2 x. ( 2 x. A ) )
10 9 oveq1i
 |-  ( ( 4 x. A ) + 2 ) = ( ( 2 x. ( 2 x. A ) ) + 2 )
11 3 8 10 3eqtr4ri
 |-  ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) )