Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | decbin.1 | |- A e. NN0 |
|
Assertion | decbin3 | |- ( ( 4 x. A ) + 3 ) = ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decbin.1 | |- A e. NN0 |
|
2 | 4nn0 | |- 4 e. NN0 |
|
3 | 2nn0 | |- 2 e. NN0 |
|
4 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
5 | 1 | decbin2 | |- ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) ) |
6 | 5 | eqcomi | |- ( 2 x. ( ( 2 x. A ) + 1 ) ) = ( ( 4 x. A ) + 2 ) |
7 | 2 1 3 4 6 | numsuc | |- ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 ) = ( ( 4 x. A ) + 3 ) |
8 | 7 | eqcomi | |- ( ( 4 x. A ) + 3 ) = ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 ) |