Metamath Proof Explorer


Theorem decbin3

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1
|- A e. NN0
Assertion decbin3
|- ( ( 4 x. A ) + 3 ) = ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 )

Proof

Step Hyp Ref Expression
1 decbin.1
 |-  A e. NN0
2 4nn0
 |-  4 e. NN0
3 2nn0
 |-  2 e. NN0
4 2p1e3
 |-  ( 2 + 1 ) = 3
5 1 decbin2
 |-  ( ( 4 x. A ) + 2 ) = ( 2 x. ( ( 2 x. A ) + 1 ) )
6 5 eqcomi
 |-  ( 2 x. ( ( 2 x. A ) + 1 ) ) = ( ( 4 x. A ) + 2 )
7 2 1 3 4 6 numsuc
 |-  ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 ) = ( ( 4 x. A ) + 3 )
8 7 eqcomi
 |-  ( ( 4 x. A ) + 3 ) = ( ( 2 x. ( ( 2 x. A ) + 1 ) ) + 1 )