Metamath Proof Explorer


Theorem deceq1i

Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypothesis deceq1i.1
|- A = B
Assertion deceq1i
|- ; A C = ; B C

Proof

Step Hyp Ref Expression
1 deceq1i.1
 |-  A = B
2 deceq1
 |-  ( A = B -> ; A C = ; B C )
3 1 2 ax-mp
 |-  ; A C = ; B C